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Text Classification

● Text categorization: assigning a label or category to a text or
document

● Sentiment analysis: extraction of sentiment, the positive or negative
orientation of a text

● Spam detection: binary classification task of assigning an email to
spam or not spam

● Language id: in what language a text is written, e.g. social media

● Authorship attribution: determine a text’s author

● Topic label: determining the subject of a document
(e.g. physics vs. biology)
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Text Classification: Examples

● Simple lexical features provide useful cues

● Spam detection:
phrases like “WITHOUT ANY COST” or “Dear Winner” → probably spam

● Sentiment analysis

+ ...zany characters and richly applied satire, and some great plot twists
- It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
- ...awful pizza and ridiculously overpriced...

Some informative words

– great, richly, awesome
– pathetic, and awful, ridiculously
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Basic Classification Method: Manually Written Rules

● Rules based in combinations of words or other features

– spam: black-list-address
– detection of the phrase “dollars” or “have been selected”

● High accuracy possible

– in specific domains
– if rules are carefully formulated and refined by experts

● Problems

– building and maintaining rules is expensive
– too literal and specific: high-precision, low recall
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Supervised Machine Learning for Text Classification

● Supervised learning: data set of input observations,
each associated with some correct output (the supervision signal)

● Learn how to map from a new observation to a correct output

● Input x and a fixed set of output classes Y = {y1, y2, ..., yM}
return predicted class y ∈ Y

● Text classification
– d for document as input variable
– c for class as output variable
– training set of N documents: {(d1, c1), ..., (dN , cN)}
– learn a classifier that maps a new document into class c ∈ C

● Probabilistic classifier: also gives the probability of the observation
being in class c
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Classification Algorithms

● Generative classifiers
– build a model of how a class could generate some input data
– given an observation → return the class most likely to have generated

the observation

– Naive Bayes Classifier

● Discriminative classifiers
– learn what features from the input are most useful to discriminate

between classes

– more commonly used
– for example, logistic regression
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Generative and Discriminative Models

● Generative models

– learn joint probability distribution of data
– prediction for input x : pick class with the highest joint probability

● Discriminative models

– look at conditional probability p(y ∣x): learn border between classes
– prediction for input x : pick class with the highest conditional probability

Figure from: https://lena-voita.github.io/nlp course/text classification.html
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Naive Bayes Classifier

● Multinomial naive Bayes classifier: probabilistic classifier to predict
the category of a text document based on words frequencies

● Naive: simplifying assumption about feature interaction
(assumes feature independence, given the target class)

● Multinomial distribution: models the probability of observing a
particular set of counts for n trials,

multinomial distributions work well for text data → word counts

● Bag of words: text documents are presented as sets of unordered
words, keeping only frequency information
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Documents as Bag of Words
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Naive Bayes: Intuition

● Naive Bayes is probabilistic classifier: for a document d , it returns the
class ĉ (of all c ∈ C ) with the maximum posterior probability given d

● hat notation ˆ : our estimate of the correct class

● argmax: operation that selects the argument (c) that maximizes
the function P(c ∣d)

● Intuition: use Bayes’ rule to transform the equation above into other
probabilities that have useful properties

● Bayes’ rule:
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Naive Bayes: Intuition

● Apply Bayes’ rule:

● Drop denominator (the document is always the same):

● Generative model: expresses implicit assumption about how a
document is generated

– a class is sampled from P(c)
– words are generated by sampling from P(d ∣c)
→ imaging generating documents, i.e. their word counts
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Naive Bayes Classification

● Product of the prior probability of class P(c) and likelihood of
document P(d ∣c)

● Represent document d as a set of features f1, f2, ..., fn

prior probability:
before looking at the data

● Introduce simplifying assumptions
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Naive Bayes: Simplifying Assumptions

● Bag-of-words assumption
assume that position of a word in d doesn’t matter

● Features f1, f2, ..., fn only encode word identity and not position

● Naive Bayes Assumption
conditional independence assumption that the probabilities P(fi ∣c) are
independent given the class c

● Probabilities can be “naively” multiplied

● Plug in simplifying assumptions:
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Naive Bayes

● Features: words in document

● Calculate in log-space to avoid problems with very small numbers

● Sum logs of probabilities instead of multiplying probabilities

log(ab) = log(a) + log(b)
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Training Naive Bayes

● Need to learn P(c) and P(fi ∣c)
● Maximum likelihood estimates based on frequencies in data

● Class prior P(c): percentage of documents in each class c

● For P(fi ∣c): feature as existence of a word → P(wi ∣c)
fraction of times wi appears among all words in all documents of class c

concatenate all documents of class c into one big “class c” text

● Vocabulary V : union of words in all classes
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Training Naive Bayes: Smoothing

● Problem: estimating the likelihood of a word that we have not seen in
a particular class

● Estimate likelihood for fantastic given class positive;
suppose there is no occurrence of fantastic documents of class positive

● Multiplication of all feature likelihoods → zero probability for class

● Add-one smoothing (Laplace smoothing)
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Training Naive Bayes: Unknown Words and Stop Words

● Unknown words
words in the test data not occurring in the training data:
ignore and don’t include any probability

– just remove from test input
– knowing which class has more unknown words: not helpful

● Stop words
very frequent words like the and a, to be determined via frequency
count or stop-word list: can be ignored

Often does not make much difference in practice
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Naive Bayes: Example

● Sentiment analysis with 2 classes: positive (+) and negative (-)

● 5 training sentences

– vocabulary: 20

● Test sentence: drop with

● Class priors: P(−) = 3
5 and P(+) = 2

5
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Naive Bayes: Example

● Likelihoods for 3 words in the test sentence (with Laplace smoothing):

● Test sentence S = “predictable with no fun”

● Predicted class? negative (-)
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Naive Bayes: Variants

● Standard naive Bayes classification can work well for sentiment analysis

● Some changes can improve performance

Binary naive Bayes

● For sentiment classification and some other tasks:
occurrence of a word matters more than frequency

– the occurrence of fantastic tells us a lot
– the fact that fantastic occurs 4 times does not tell much more

● Clip word counts in documents at 1

● In each document, duplicates are removed in the training and test data
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Binary Naive Bayes
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Naive Bayes: Handling Negation

● I really like this movie. (positive)
I didn’t like this movie. (negative)

● Negation completely alters the meaning of the sentence

● Modify a negative word to produce a positive review:
don’t dismiss this film

● Mark negative context add negation marker to every word after a negation
(n’t, not, no, never)

until next punctuation mark

didn’t like this movie , but I ...

didn’t NOT like NOT this NOT movie , but I ...

● Words like NOT like, NOT recommend → cues for negative sentiment

● Words like NOT bored, NOT dismiss → cues for positive sentiment
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Sentiment Lexicons

● What to do when we have insufficient labeled training data?

● Sentiment lexicon: lists of words that are pre-annotated with positive
or negative sentiment

+ admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
- awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

● Add feature that is counted when a word from the lexicon occurs

– feature “w occurs in the positive lexicon”: all instances of words
in the lexicon as counts for that feature

– feature “w occurs in the negative lexicon”: ...

● Lots of training data: using words better than just two features

● Sparse training data or not representative of test data:
dense lexicon features might be better than sparse word features
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Other Text Classification Tasks

● Naive Bayes can express any property of the input text

● Spam detection

– one of the first applications of naive Bayes (1998)
– pre-define likely sets of words and phrases: one hundred percent

guaranteed, urgent reply, millions of dollars
– other features, such as “email subject line is all capital letters”

● Language id: determine the language of a text

– most effective naive Bayes features are character n-grams
– trained on multilingual text (e.g. Wikipedia)
– plus other data resources to capture as many varieties as possible
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Accuracy

● Accuracy: percentage of all observations the system labeled correctly

● Example: consider 1 million tweets

– 100 are on the topic of pie
– 999,900 are about other topics

● Distinguish between tweets about pie and not about pie

● Simple classifier: labels every tweet as “not about pies”

– 999,900 true negatives
– only 100 false negatives
– accuracy = 999,900/1,000,000 = 99,99%

● Still a useless classifier: none of the relevant tweets are identified

● Accuracy doesn’t work well when classes are unbalanced
(most tweets are not about pies)
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Precision and Recall

● Precision: percentage of retrieved
documents relevant to the query

● Recall: percentage of relevant
documents that were retrieved

● Originally from information retrieval

Figure from https://en.wikipedia.org/wiki/Precision and recall
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Evaluation

● Consider binary detection tasks
– spam detection: is spam – is not spam
– tweets about particular topic (e.g. pies): yes – no

● Gold labels: manually annotated labels in data set

– true positive: spam documents classified as spam
– false negative: spam documents classified as non-spam
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Precision, Recall and F-measure

● Precision: percentage of items labeled as X that are in fact X

Precision = true positives
true positives+false positives

● Recall: percentage of items having label X in the test set that were
correctly identified by the system as X

Recall = true positives
true positives+false negatives

● Precision and recall emphasize true positives

● Useless “nothing is pie” classifier: no true positives

● F-Measure: combines precision and recall into one metric

F1 = 2PR
P+R

The F-measure is the (weighted) harmonic mean of precision and recall
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Evaluating More Classes

● Many classification tasks have more than two classes
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Evaluating More Classes

● Microaveraging:
collect the decisions for all classes into a single confusion matrix,
then compute precision and recall from that table

● Macroaveraging:
compute performance for each class, then average over classes

● Microaverage (average of all items)
dominated by the more frequent class since the counts are pooled

● Macroaverage (average of all classes)
better reflects statistics of smaller classes;
more appropriate when performance on all classes is equally important
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Microaveraging and Macroaveraging
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Data Sets and Cross-Validation

● Three distint data sets
– training data: train the model
– development data: tune parameters, decide on model variants
– test data: test the model on held-out unseen data

● How to best manage splitting of data?

● Cross-validation: partition data into k disjoint subsets (folds)
– train on k − 1 folds, test on the remaining one
– repeat sampling process k times
– average error rate

● k = 10: 10-fold cross-validation

● Potential problem: all data needs to be blind → no dev set
(that would be peeking at the data)

● Create fixed training and test set,
do cross-validation inside the training set
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Cross-Validation
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END
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Credits

The slides contain content and examples from

● Speech and Language Processing
(Jurafsky and Martin): Chapter 4

● Slides for Chapter 4:
https://web.stanford.edu/∼jurafsky/slp3/slides/nb24aug.pdf
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