
Concepts and Applications in NLP
Grammars and Parsing

Marion Di Marco

November 19, 2024

1



Outline

● How to describe (English) sentences in a formal way

● What structures can we use to describe them?

● How can we find the structure of a given sentence?

2



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

3



Syntactic Constituency

● Syntactic constituents: groups of words that behave as single units

● Noun phrase: sequence of words surrounding at least one noun

– a green car
– the reason he came yesterday
– they (Pronoun)

● Why do these sequences form constituents?
→ similar syntactic environments

– they swim
– a green car drives
– the reason he came yesterday was

● Only complete noun phrases can occur before a verb, not parts thereof

– *the was

4



How to Identify Constituents?

● Asking for setence fragments:

– The students eat pizza. → Who eats pizza?
– The students eat pizza. → What eat the students?

● Coordination: constituents of the same type can be coordinated

– We peeled the potatoes. → We washed and peeled the potatoes.

● Substitution, for example with pronouns:

– The boy ate ice cream. → He ate ice cream.
– We prepared pizza with pineapples last week. → We did that last week.

● Topicalization: move a constituent to the beginning of the sentence

– He put is bike into the garden → Into the garden he put his bike.

● Clefting

– He put sprinkles on the cake. → On the cake is where he put sprinkles.

5



Constituents

● A sequence of words that forms a constituent in one context is not
necessarily a constituent in another context

● [cheap textbooks] is a constituent in sentence 7(a)

– the students wondered how they could be obtained

● [cheap textbooks] is not a constituent in sentence 7(b)

– [textbooks] is a separate constituent:
the students wondered how cheap they could be.

– [how cheap] is a constituent:
the students wondered what textbooks could be.

Example from Understanding Syntax, Tallermann (2011), Chapter 5

6



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

7



Constituents in Grammars: Idea

● Notion of constituency → abstraction

● Groups of words (= constituents) behave as single units

● We “know” how to group constituents of particular types
for example, noun phrases can go before verbs

● Formal system for modeling constituent structure:
Context Free Grammars (CFG) or phrase-structure grammars

● General idea: segment a constituent into smaller constituents
up to the level of words

8



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

9



Context-Free Grammars: Example

● Context-Free Grammars (CFG) or phrase-structure grammars

● A CFG consists of a set of rules and a lexicon

● Rules or productions express how symbols of the language can be
grouped and ordered

● The lexicon contains words and symbols

● Example grammar for a noun phrase:

Rules
NP → Det Nominal
NP → ProperNoun
Nominal → Noun ∣ Nominal Noun

Lexicon
Det → a
Det → the
Noun → flight

10



Context-Free Grammars: Example

● Example grammar for a noun phrase:

Rules
NP → Det Nominal
NP → ProperNoun
Nominal → Noun ∣ Nominal Noun

Lexicon
Det → a
Det → the
Noun → flight

● Terminal symbols in the lexicon correspond to the words

● Non-terminal symbols express abstractions over the terminals

● Context-free rule:

– left side: one non-terminal symbol
– right side: ordered list of one or more terminals and non-terminals

● The left-side non-terminal in the lexicon: the word’s lexical category

11



Context-Free Grammar: Derivation

● A CFG can be thought of in two ways:

– as a device for generating sentences
– as a device for assigning a structure to a given sentence

● Viewing a CFG as a generator: read the → as rewrite the symbol on
the left with the string of symbols on the right

● The string a flight can be derived from the non-terminal NP:

start from symbol: NP
rewrite NP as: Det Nominal
rewrite Nominal as: Noun
rewrite the part-of-speech tags as: a flight

● The sequence of rule expansions is called a derivation

12



Context-Free Grammar: Parse Tree

● Derivations can be represented by a parse tree

● The node NP dominates all the nodes in the tree
(Det, Nom, Noun, a, flight)

● NP immediately dominates the nodes Det and Nom

13



Context-Free Grammar: Start Symbol

● Each grammar must have one designated start symbol S

● CFGs are often used to define sentences: S is often interpreted
as the sentence node

● The formal language defined by a CFG:
set of strings that are derivable from S

14



Context-Free Grammar Example: Simple Sentences

Rule Example

S → NP VP I prefer a morning flight
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday
PP → Prep NP to Seattle

15



Context-Free Grammar Example: Simple Sentences

Bracketed notation:
[S[NP[Pro I ]][VP[V prefer][NP[Deta][Nom[Nmorning][Nom[Nflight]]]]]]

16



Grammatical vs. Ungrammatical Sentences

● Sentences that can be derived by a grammar are in the formal
language defined by that grammar: grammatical sentences

● Sentences that cannot be derived by a grammar are not in the formal
language defined by that grammar: ungrammatical sentences

● Formal languages are only a very simplified model of natural languages
often difficult to decide whether a sentence is a valid sentence of e.g. English

● Formal languages to model natural languages: generative grammar
the language is defined by the set of possible sentences “generated” by the

grammar

17



Formal Definition of Context-Free Grammar

● A context-free grammar G is defined by four parameters

18



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

19



Parsing

● Parsing: determine the rules of a sentence given the rules of a grammar

⇒ Is the sentence valid?

⇒ What is the structure of the sentence?

20



CYK Parsing

● CYK (or CKY) algorithm (Cocke-Kasami-Younger):
a dynamic bottom-up approach to parsing in a context-free grammar

– bottom-up: start with the words
– dynamic programming approach: solve complex problems by breaking

them down into smaller subproblems; save their results in a table and
re-use them

● CYK first detects smaller constituents and stores them for merging
into larger constituents

● The CKY algorithm requires grammars to first be in Chomsky Normal
Form (CNF)

● Complexity: O(N3∣G ∣) where N = input length, ∣G ∣ = grammar size

21



Chomsky Normal Form

● A CFG is in Chomsky Normal form if

– each production is of the form A→ BC or A→ a
– each production is ϵ-free (ϵ = empty string)

● Chomsky normal form grammars are binary branching

● Any CFG can be converted into a (weakly equivalent) Chomsky
Normal Form Grammar

● Two grammars are weakly equivalent if they generate the same set of

strings but not the same phrase structure to each sentence.

● Formally, CFGs can have empty productions (NP → ϵ)
Empty productions can be eliminated without changing the language

of the grammar

● We assume that there are no ϵ productions in the grammar!

22



Chomsky Normal Form

● How to transform a CFG into Chomsky Normal Form

● Rules with more than two non-terminals

⇒ Use “dummy” non-terminals:

A → B C D

A → B X
X → C D

● Unit productions: rules with a single non-terminal on the right side

⇒ Rewrite the right-hand side of the original rules with the right-hand
side of all the non-unit production rules that they ultimately lead to

23



Chomsky Normal Form: Example Grammar

24



CYK Recognition

● Each non-terminal node above the part-of-speech level in a parse tree
has exactly two daughters

● General idea: apply binary productions to merge adjacent symbols into
larger constituents

● Bottom-up parsing: starting from words, apply a series of merges that
ultimately result in the start symbol S covering the input

● CYK: systematically construct a table in which each cell contains the
set of non-terminals that derive the covered span of words

● Filling the table bottom up: all cells contributing to the current cell are
already filled

25



CYK Parsing

26



CYK Parsing

27



CYK Parsing: Example

28



CYK Parsing: Example

29



CYK Parsing: Example

30



CYK Recognition vs. Parsing

● Technically, the algorithm in the pseudo-code is a recognizer,
not a parser

– it tells whether a valid parse exists
– valid if there is an S spanning the sentence in cell [0,n]

● Does not yet provide a derivation

– augment the entries in the table so that each non-terminal is paired
with pointers to the table entries from which it was derived

⇒ The completed table contains all the possible parses for a given input

● Return an arbitrary parse:
chose an S from cell [0,n] and retrieve its constituents

● Return the best parse?

31



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

32



Ambiguities

● Structural ambiguity: a grammar can assign more than one parse

● For example: PP-attachment

33



PP-Attachment

“I shot an elephant in my pajamas”

34



Structural Ambiguity

● Structural ambiguity comes in many forms

● Attachment ambiguity: a particular constituent can be attached to the
parse tree at more than one place

– “I see the man with the telescope.”
– “We eat sushi with chopsticks” vs. “We eat sushi with salmon”

● Coordination ambiguity: phrases can be conjoined by a conjunction

– “old men and women” → [old [men and women]]
[old men] and [women]

● Modifier scope: [plastic [cup holder]] vs. [[plastic cup] holder]

● Complement structure: “The students complained to the professor
that they didn’t understand”

– that they didn’t understand → complained
– that they didn’t understand → the professor

35



Structural Ambiguity: Side Note

● Ambiguities are not necessarily the same across languages

English We eat sushi with chopsticks:
French On mange des sushis avec des baguettes

English We eat sushi with salmon:
French On mange des sushis au saumon

36



Ambiguities: Local Solutions

● Ambiguous PP-attachment:

(a) We met the president on Monday.
(b) We met the president of Mexico.

⇒ the PP can be attached to the verb (met) or the NP (the president)

● Given a labeled corpus: compare the likelihood of observing the
preposition alongside each candidate attachment point:

p(on∣met) ≶ p(on∣President)
p(of ∣met) ≶ p(of ∣President)

● With sufficient labeled data, some instances of attachment ambiguity
can be solved by supervised classification

● Limitation: short toy examples vs. realistic sentences

37



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

38



Probabilistic Context-Free Grammar

● A Probabilistic Context-Free Grammar (PCFG) consists of

– a set of terminals W k (k = 1,...,V)

– a set of non-terminals N i

– a designated start symbol S (member of N)

– a set of rules N i → ζ j

(where ζ j is a sequence of terminals and non-terminals)

– A corresponding set of probabilities on rules such that

∀i ∑j P(N i → ζ j) = 1

● Probability of a sentence (according to a grammar G):

P(w1m) = ∑t P(w1m, t) where t is a parse tree of the sentence

● Probability of a tree: multiply the probabilities of the rules that built
the subtrees

39



PCFG: Assumptions

● Place invariance. The probability of a subtree does not depend on
where in the string the words it dominates are

● Context-free. The probability of a subtree does not depend on words
not dominated by the subtree

● Ancestor-free. The probability of a subtree does not depend on nodes
in the derivation outside the subtree

● Using these conditions we can justify the calculation of the probability
of a tree in terms of just multiplying probabilities attached to rules

40



PCFG: Example Grammar

S → NP VP 1

NP → NP PP 0.5
→ we 0.25
→ sushi 0.125
→ chopsticks 0.125

PP → IN PP 1

IN → with 1

VP → V NP 0.5
→ VP PP 0.25
→ MD V 0.25

V → eat 1

(tree1)

(tree2)

● P(tree1) = 1.0 × 0.25 × 0.5 × 1.0 × 0.5 × 0.125 × 1.0 × 1.0 × 0.125
● P(tree2) = 1.0 × 0.25 × 0.25 × 0.5 × 1.0 × 1.0 × 0.125 × 1.0 × 0.125

41



Context and Independence Assumptions

● Humans make wide use of the context of an utterance to disambiguate
language

● The prior discourse context influences the interpretation of later
sentences (“priming” in the psychological literature)

● People will find semantically intuitive readings for sentences in
preference to weird ones

● In our PCFG model: making independence assumptions that
none such factors are relevant

● But: context information is relevant to and might be usable for
disambiguating probabilistic parses

42



Lexicalization

● Lack of lexicalization in PCFG

● Example: expansion of a VP is independent of the verb

→ different subcategorization frames of intransitive, transitive and
intransitive verbs

43



Lexicalization

● Choosing phrasal attachment positions

– lexical content of phrases often provides relevant information
– syntactic category of the phrase provides only little information

● PCFGs fail to capture the lexical dependencies between words

● Combine lexical information and richer model than linear n-grams

● Lexicalize a CFG: mark phrasal node by its head word

44



Structural Context

● PCFGs are also deficient on purely structural grounds

● Assumption that probabilities are context-free:
probability of a noun phrase expanding in a certain way is independent
of where the NP is in the tree

● But: this is not true when looking at data

45



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

46



Measuring Parsing Performance

● Assume we have a set of reference parses and a set of system parses

● Per-sentence accuracy: proportion of sentences on which the system
and reference parses exactly match

● Give partial credit when correct parts match with the reference

PARSEval metrics:

Precision = # of correct constituents in hypothesis parse of s
#of total constituents in hypothesis parse of s

Recall = # of correct constituents in hypothesis parse of s
#of total constituents in reference parse of s

F-measure F1 = 2PR
P+R

● Labeled precision/recall: phrase type for each constituent must match
Unlabeled precision/recall: only constituent structure must match

47



Measuring Parsing Performance: Example

● S → w1∶5 is true positive, because it appears in both trees

● VP → w2∶5 is true positive as well

● NP → w3∶5 is false positive, because it appears only in the system output

● PP → w4∶5 is true positive, because it appears in both trees

● VP → w2∶3 is false negative, because it appears only in the reference

● Precision = 3
4 , Recall =

3
4 , F1 = 3

4

48



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

49



Treebanks

● Treebank: collection of correctly parsed sentences

● Useful for building statistical parsers

● Penn Treebank:

– the first publicly available syntactically annotated corpus
– Wall Street Journal (50,000 sentences, 1 million words)
– Other corpora: Brown Corpus, ATIS
– Automatically parsed, manual correction
– Standard data set for English phrase-structure parsers

50



Penn Treebank: Example

51



Penn Treebank: Some Characteristics

● Representation in Lisp notation (bracketing)

● Grouping of words into phrases is fairly flat:
for example, no disambiguation of the compound noun in the phrase

Arizona real estate loans

● Some attempt to indicate grammatical and semantic functions:
the -SBJ and -LOC tags in the figure

● Empty nodes to indicate understood subjects and extraction gaps
the understood subject of the adverbial clause, where the empty node is

marked as *

52



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

53



Dependency Grammars – Intro

54



Dependency Grammars

● Syntactic structure is described in terms of directed binary
grammatical relations

● Relations among the words represented as directed, labeled arcs
from heads to dependents

● Typed dependency structure: fixed inventory of grammatical
relations

● Root node: marks the head of the tree

55



Dependency and Phrasal Structures Compared

56



Dependency Grammars

● Absence of nodes corresponding to phrasal constituents or lexical
categories in the dependency parse

● Internal structure of the dependency parse: directed relations between
words

● Head-dependent relationships encode important information
which is often buried the more complex phrase-structure parses

● Example: verb arguments

– arguments (= subject, object) are directly linked to prefer
– connection to main verb is more distant in the phrase-structure tree

● Head-dependent relations: good proxy for semantic relations
→ dependency grammars are currently more common than
constituency grammars

57



Word Order

● Ability to deal with free word order

● an object might occur before or after a location adverbial → separate
rules in a phrase-structure grammar for each possibility

● dependency-based approach: link type representing the relation

→ abstract away from word order information

58



Dependency Relations

● Grammatical Relations provide basis for dependency structures

● Arguments of grammatical relations: head and dependent
→ directly linking heads to words that are immediately dependent on them

● Kind of grammatical relation: grammatical function

– subject
– direct object
– indirect object

● Cross-linguistic standards for grammatical relations

● Universal Dependencies (UD) project de Marneffe et al. (2021)

– open community effort to annotate dependencies
– across more than 100 languages

59



Dependency Relations: UD

60



Dependency Relations: UD

61



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

62



Dependency Formalisms

● Dependency structure: directed graph G = (V ,A)
– a set of vertices V
– a set of ordered pairs of vertices A (arcs)

● V corresponds to words in the sentence

● A captures the head-dependent and grammatical function relationships
between the elements in V

● Dependency tree: a directed graph

– there is a single designated root node that has no incoming arcs
– with the exception of the root node, each vertex has exactly one

incoming arc
– there is a unique path from the root node to each vertex in V

63



Projectivity

● Projective: there is a path from the head to every word that lies
between the head and the dependent

● All dependency trees so far have been projective

● Many valid constructions can lead to non-projective trees

● A dependency tree is projective: it can be drawn with no crossing edges

● Computational limitations to many widely used parsing algorithms

64



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

65



Transition-based parsing

● Dependency parsing with transition-based parsing
– stack: where we build the parse
– buffer: tokens to be parsed
– oracle: decision about next step in building the parse

● Parser walks through the sentence from left to right

– shift items from buffer to stack
– examine the top two words on the stack: what transition to apply

● Transition possibilities

– assign the current word as the head of a previously seen word
– assign a previously seen word as the head of the current word
– postpone dealing with the current word, storing it for later processing

66



Transition-based parsing

67



Transitions

● leftarc: assert a head-dependent relation between the word at the
top of the stack and the second word; remove the second word from
the stack

● rightarc: assert a head-dependent relation between the second word
on the stack and the word at the top; remove the top word from the
stack

● shift: Remove the word from the front of the input buffer and push it
onto the stack

● Configuration: represents the current state of the parse
stack, input buffer of words, and a set of relations representing a dependency

tree

68



Algorithm

● Initial configuration: stack: ROOT node; buffer: all tokens; and an empty

set of relations

● Final configuration:
stack and buffer: empty; the set of relations represents the parse.

● Consulting an oracle: → comes later!
provides the correct transition operator given the current configuration

69



Algorithm: Some Notes

Complexity: linear in the length of the sentence
single left-to-right pass: shift and reduce

● Straightforward greedy algorithm

– oracle provides a single choice
– no other options explored, no backtracking
– a single parse is returned

● Assumption that the oracle always provides the correct operator

– likely not true in practice
– incorrect choices → incorrect parses

● There are techniques to explore the search space more fully → book

70



Transition-Based Parsing: Example

To produce labeled dependency trees: parameterize leftarc and rightarc

with dependency labels such as leftarc(nsubj)

71



Transition-Based Parsing: Example

rightarc assigns book as the head of me and pops me from the stack

several subsequent applications of the shift operator

All the remaining words have been passed onto the stack.
Apply leftarc operator

72



Creating an Oracle: Overview

● Oracle is trained by supervised machine learning

● Supervised machine learning → we need training data:
configurations annotated with the correct transition to take

● Extract features from the configurations to train a classifier

– manually designed features, for example feature templates including
word forms, lemmas, parts of speech in combination with dependency
relations (cf. last lecture)

– neural classifiers that represent the configuration via embeddings

73



Creating an Oracle: Generating Training Data

● Oracle takes as input a configuration and returns a transition operator

● we cannot get this directly from parsed trees in a tree bank

● To generate training data:

– use training sentences with their corresponding reference parses from a
treebank

– simulate the operation of the parser to give us correct transition
operators for each successive configuration

● Gold standard reference parse for training sentences: we know which
dependency relations are valid

74



Creating an Oracle: Generating Training Data

● Reference parse to guide the selection of operators

● Given a reference parse and a configuration, the training oracle
proceeds as follows:

– Choose leftarc if it produces a correct head-dependent relation given
the reference parse and the current configuration

– Otherwise, choose rightarc if (1) it produces a correct
head-dependent relation given the reference parse and (2) all of the
dependents of the word at the top of the stack have already been
assigned

– Otherwise, choose shift

● Restriction on rightarc: to ensure that a word is not popped from
the stack before all its dependents have been assigned to it

75



Creating an Oracle: Generating Training Data

76



Creating an Oracle: Generating Training Data

● Step 1:

– leftarc is not applicable: (root ← book) is not in the reference
– rightarc: (root → book) is a valid relation, but book has not been

attached to its dependents
– defer to shift

● Step 3: leftarc to link the to its head flight

● Step 4:
Add relation between book and flight?
This would remove flight from the stack and prevent the later
attachment of Houston

77



Feature-Based Classifier

● Feature templates to extract features from training configurations

● Some features: word forms, lemmas, parts of speech

● Template:

● Configuration from training oracle (next operation is shift):

● Apply feature templates:
78



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

79



Evaluation

● Exact match: quite pessimistic, not fine-grained enough

● Evaluating dependency parsers: labeled and unlabeled attachment
accuracy

– labeled attachment: proper assignment of a word to its head along with
the correct dependency relation

– unlabeled attachment: correctness of the assigned head, ignoring the
dependency relation

● LAS: Labeled attachment score
UAS: Unlabeled attachment score
LAS: Label Accuracy score (percentage of token with correct labels)

80



Evaluation

● LAS: 4 of 6 dependency relations: LAS = 2/3

● UAS: 5/6 (relation between book and flight is a head-dependent
relation in the reference)

● Beyond attachment scores:
how well is a system for a particular kind of dependency relation?

81



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

82



Dependency Treebanks

● Treebanks: relevant for development and evaluation of dependency
parsing

– parser training → gold labels
– information for corpus linguistics

● Manual annotation: directly creating dependency structures or
correction of a parser

● Universal Dependency project: https://universaldependencies.org
treebanks for more than 100 languages

83



UD Treebank Examples

84



Outline

Introduction

Context-Free Grammars
Context-Free Grammars: Examples and Definition
Deterministic Bottom-Up Parsing: CYK
Ambiguities
Probabilistic Context-Free Grammars
Evaluation
Penn Treebank

Dependency Grammars
Dependency Formalisms
Transition-Based Dependency Parsing
Evaluation
Dependency Treebanks

Credits

85



Credits

The slides contain content and examples from

● Speech and Language Processing
(Jurafsky and Martin): Chapters 18 and 19

● Foundations of Statistical Natural Language Processing
(Manning and Schütze): Chapters 11 and 12

● Natural Language Processing
(Eisenstein): Chapter 10

86


	Introduction
	Context-Free Grammars
	Context-Free Grammars: Examples and Definition
	Deterministic Bottom-Up Parsing: CYK
	Ambiguities
	Probabilistic Context-Free Grammars
	Evaluation
	Penn Treebank

	Dependency Grammars
	Dependency Formalisms
	Transition-Based Dependency Parsing
	Evaluation
	Dependency Treebanks

	Credits

