Concepts and Applications in NLP Introduction and Linguistic Concepts

Marion Di Marco

October 22, 2024

What is NLP?

- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Introduction: What is NLP?

\rightarrow search engines

English

÷

German

Some species, like × Stegosaurus, are believed to have used the large back plates to regulate their body temperature. Man geht davon aus, dass einige Arten wie Stegosaurus die großen Rückenplatten zur Regulierung ihrer Körpertemperatur genutzt haben.

D

Ē

۲

\rightarrow translation

SYSTEM

You are a helpful assistant.

USER

Explain in 3 sentences: What is the difference between a turtle and a tortoise?

ASSISTANT

The primary difference between a turtle and a tortoise lies in their habitat: turtles are generally adapted to living in water or near aquatic environments, while tortoises are land-dwellers. Turtles typically have more streamlined shells for swimming, while tortoises have rounder, heavier shells for protection on land. Additionally, turtles often possess webbed feet or flippers for swimming, whereas tortoises have sturdy, columnar legs for walking on rugged terrain.

\rightarrow language models

Introduction: Natural Language Processing

 Natural Language Processing: making human language accessible to computers

Tasks and applications

information retrieval machine translation question answering paraphrasing sentiment analysis text generation summarization

Analysis tasks

tokenization and word segmentation part-of-speech tagging named-entity recognition syntactic parsing semantic role labeling coreference resolution word sense disambiguation

• Combines the fields of computer science, AI and linguistics

• Data

- text corpora (general language, domain-specific, parallel, ...)
- further knowledge sources: lexicons, dictionaries, grammars, ...

Optional: linguistic analysis or annotation

- refine your raw corpus

• Train

- Learn statistical patterns relevant for the task

• Apply and Evaluate

- comparison against a baseline or benchmark
- human evaluation

- Human language has many layers and challenges
- Humans can understand and produce language effortlessly
 - understanding of linguistic structure
 - world knowledge
 - ability to generalize and interpret context
- What about computers?
 - good at detecting statistical patterns
- How well can computers capture language?
- How well can computers handle the challenges of language?

What is NLP?

- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Challenges in NLP: Word Senses

Illustrations from https://www.englishforkidz.com/2020/01/vocabulary-cards-word-different-meanings.html

Challenges in NLP: Structure and Attachment

- The boy saw the man with a telescope.
 - who has the telescope?
 - note: in some languages, there is no ambiguity \rightarrow how to translate?
- a criminal lawyer
 - is the lawyer criminal?
 - does the lawyer practice criminal law?
- local phone compay, live fish transporter
- Compound structure: Mädchenhandelsschule
 - [Mädchen [Handel Schule]]: trade school for girls
 - [Mädchen Handel] Schule]: school for girl trade
- Wachstube $Wach|Stube \rightarrow guard room Wachs|Tube \rightarrow tube of wax$

- Some words cannot be interpreted literally, but only in their context
- For example: idiomatic expressions she's gone off the deep end er hat nicht mehr alle Tassen im Schrank
- All words in the phrases have a distinct meaning that is not related to the meaning of the phrase (*crazy/verrückt*)
- Context: need to consider the entire phrase to derive the meaning
- Challenging for many NLP tasks

Challenges: Non-Compositional Phrases

• to go off the deep end seems to be difficult to translate

GPT-4o:

SYSTEM

Translate into German.

USER

She has gone off the deep end.

ASSISTANT

Sie hat den Verstand verloren.

SYSTEM

Translate into German. Please give 3 possibilities.

USER

She has gone off the deep end.

ASSISTANT

1. Sie ist übergeschnappt.

2. Sie dreht durch.

3. Sie hat den Verstand verloren.

I never said she stole my money.

I never said she stole my money.
I never said she stole my money.
I never said she stole my money.
I never said she stole my money.

I never said she stole **my** money. I never said she stole my **money**. It was probably someone else but definitely not me who said that.

I never said she stole my money. Never.

I probably hinted, but did not say it.

It might be someone associated with her.

She borrowed some money from me a long time ago and I was just wondering why she has yet to return it.

She stole someone else's money.

She stole my credit card.

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Linguistics: the scientific study of language and its structure

Figure from https://commons.wikimedia.org/wiki/ File:Major_levels_of_linguistic_structure.svg

• Spoken language

- phonetics: production and perception of speech sounds
- phonology: relations between speech sounds in languages

• Written language

- Morphology: structure and composition of words
- Syntax: structure of phrases and sentences
- Semantics: meaning of phrases and sentences
- Pragmatics: meaning and intended meaning in a discourse context

\rightarrow Focus on written language

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Words

• Word: basic atomic unit of meaning

- Adapt the meaning based on the context
 - ... their parents' house ...
 - ... the White House ...
- Almost all uses of *house* are connected to the basic unit of meaning
- Smaller units such as syllables or sounds (*hou* or *s*) do not evoke the mental image of *house*

- Notion of words seems straightforward for English \rightarrow space separated
- Some writing systems do not clearly mark words as unique units for example, Chinese is written without spaces between the words
- Complex words and compounding: some words appear to be one word, but consist of several parts
 - English: homework, tumbledown, blackboard
 - German: Apfelkuchen (apple cake), feuerlöscherrot (fire extinguisher red)
 Rinderkennzeichnungsfleischetikettierungsüberwachungsaufgabenübertragungsgesetz¹
 - Finnish: istahtaisinkohankaan (I wonder if I should sit down for a while after all)²

 $\label{eq:linear} $1 https://www.duden.de/sprachwissen/sprachratgeber/Die-langsten-Worter-im-Dudenkorpus $1 https://en.wikipedia.org/wiki/Finnish_language$

Example: Agglutinative Languages

• Agglutination: process of forming new words by concatenating morphemes that correspond to syntactic features

Turkish	English
duy(-mak)	(to) sense
duygu	sensation
duygusal	sensitive
duygusallaş(-mak)	(to) become sensitive
duygusallaştırıl(-mak)	(to) be made sensitive
duygusallaştırılmış	the one who has been made sensitive
duygusallaştırılamamış	the one who could not have been made sensitive
duygusallaştırılamamışlardan	from the ones who could not have been made sensitive

• For the sake of simplicity:

assume words (=sequences between spaces) as basic units of meaning

• Note: focus mainly on English, but there is also a lot of work looking into modeling morphologically complex languages!

Tokenization

- For NLP tasks
 - consistent representation of the data as a sequence of tokens
 - keep the vocabulary as small as possible
- Do not blow up the vocabulary with different forms such as *house* and *house*, and *house*! and *"house"*
- Tokenization: breaking raw text into words assuming words as they appear on the surface level as tokens
- Languages with similar concepts of words than English: essentially splitting off punctuation
- Writing systems without spaces or languages with highly complex words: segmentation is more challenging

What are the Words of a Language?

Corpora and Word Distribution

- The vocabulary of a language is fluid
- In practice: text corpus with a fixed set of words
- Continually update with new data \rightarrow larger corpora

• English news data (33M sentences):

freq	word	freq	word	freq	word
42380661	1	17313	timing	3	yoghurt-coated
40887715	the	17304	filming	3	yesteray
38696981		17303	overcome	3	yellow-beaked
22720213	to	17300	magic	3	worrried
19785952	and	17299	innocent	3	womansplain
19644063	of	17296	admit		
19025360	а	17278	patterns	2	ruminococcaceae
15930678	in	17275	rolling		
9164833	's	17269	formally	1	north-northwestern

Corpora and Word Distribution

- Morphemes: smallest meaningful constituents
 unattainable_{Adj} → un|attain|able → un_{NegPrefix} attain_{Verb} able_{AdjSuffix}
- Lexeme: dictionary words

houses \rightarrow house is, was, are \rightarrow (to) be

- Word-form: lexeme + grammatical features read + "third person, singular, present tense" = reads
- **Paradigm**: set of word-forms belonging to a lexeme (to) make: {make, makes, made, making}
- Word families

read, reader, unreadable, readability, ...

• Morphology: studies the internal structure and composition of words

• Inflectional morphology:

addition of a morpheme to express grammatical categories

→ does not change the core lexical meaning of the words number: house → houses tense: machen → machte

• Derivational morphology:

forming a new word from existing words

→ changes the lexical interpretation of the word addition of particle: ab + machen → abmachen ('off make': remove) adjectivization: fold_{verb} + -able → foldable_{adj}

- Morphologically poor languages: express relationships between words mostly with function words
- Morphologically rich languages: morphological variations
 - verbal inflection
 - nominal inflection
 - word formation processes: for example compounding
 Apfel + Kuchen → Apfelkuchen (apple cake)
- More morphological variation: larger vocabulary of surface forms

Example: French Verbal Inflection

Inflection paradigm for the French verb voir (to see)

INDICATIF							
Présent		Imparfait		Passé simple		Futur simple	
je	vois	je	voyais	je	vis	je	verrai
tu	vois	tu	voyais	tu	vis	tu	verras
il/elle/on	voit	il/elle/on	voyait	il/elle/on	vit	il/elle/on	verra
nous	voyons	nous	voyions	nous	vimes	nous	verrons
vous	voyez	vous	voyiez	vous	vítes	vous	verrez
ils/elles	voient	ils/elles	voyaient	ils/elles	virent	ils/elles	verront

SUBJONCT	IF					CONDITIONNEL	
Présent			Imparfait			Présent	
que	je	voie	que	je	visse	je	verrais
que	tu	voies	que	tu	visses	tu	verrais
qu'	il/elle/on	voie	qu'	il/elle/on	vit	il/elle/on	verrait
que	nous	voyions	que	nous	vissions	nous	verrions
que	vous	voyiez	que	vous	vissiez	VOUS	verriez
au'	ils/elles	voient	qu'	ils/elles	vissent	ils/elles	verraient

FORMES IMPERSONNELLES		
Infinitif	Participe présent	Participe passé
voir	voyant	vu(e)

- In addition: composed tenses
- In contrast: (to) see, sees, saw, seen, seeing

Overview from https://en.pons.com/verb-tables/french/voir

Morphological Complexity

- Large vocabulary \rightarrow data sparsity
 - $\rightarrow\,$ some forms only occur infrequently or even not at all
- Generally challenging for NLP applications
- Interpretation of a seen form:
 - $\rightarrow\,$ what does the particular realization of a word mean?
- Generation of an appropriate form:
 - $\rightarrow\,$ what should a form look like in the given context?
- Just add more training data?
 - more data certainly helps ...
 - $\ \ldots \$ but still puts morphologically rich languages at a disadvantage
- Ideally: generalization

Handling Morphological Complexity

- Simplify complex form to their lemma or stem
 - stemming or lemmatization
 - core lexical meaning remains
 - language/context specific surface realization is removed
- Different strategies for different applications
 - inflectional features (tense, plural, case, ...) might be kept
 - machine translation
 - (monolingual) language modeling
 - context vectors
- Compound splitting
 - (statistical) machine translation
- Generation: generate forms given stem and features

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

- Parts of speech: grammatical categories or word classes
- Words within the same word class: similar syntactic behaviour and similar grammatical properties
- Part-of-Speech tagging: labeling the POS tags of words in a text
- Well-established strategy:
 - annotate a large amount of text with POS-tags
 - train a tagger on the annotated data
- No trivial task:
 - words that appear the same can occur in different functions, for example to house (VERB) ↔ the house (NOUN)
 - classify previously unseen words

POS Tagging – Example

word	POS
When	WRB
the	DT
space	NN
shuttle	NN
was	VBD
approved	VBN
in	IN
1972	CD
,	,
NASA	NP
officials	NNS
predicted	VBD
that	IN
they	PP
would	MD
launch	VB
one	CD
every	DT
week	NN
or	CC
two	CD
	SENT

POS Tagging: Challenges

- The farm was used to produce produce.
- The dump was so full that it had to refuse more refuse.
- We must **polish** the **Polish** furniture.
- When shot at, the **dove dove** into the bushes.
- There was a **row** among the oarsmen about how to **row**.
- They were too **close** to the door to **close** it.
- The wind was too **strong** to **wind** the sail.

Function Words and Content Words

Content words

- Words with lexical content
 - Nouns \rightarrow refer to entities
 - Verbs \rightarrow actions
 - Adjectives \rightarrow attributes of entities
 - Adverbs \rightarrow attributes of actions
- Open-class words

Function words

- · Words with little to no lexical meaning
- Provide the structure of a sentence: express grammatical relations between content words
- For example prepositions, pronouns, articles, auxiliary verbs, ...
- Closed-class words

What does that mean for NLP applications?

- Content words:
 - continually evolving non-finite set of words
 - many existing words, with new words being introduced
 - depending on the language: further inflectional variants $\ \ \rightarrow \ morphology$
- Need for large text corpora to span many topics and domains for sufficient coverage

• Function words:

- comparatively small set of words
- make up a large part of the overall word count
- their interpretation is often context-dependent (for example, *that* as a determiner or relative pronoun)
- depending in the language: different realization of linguistic concepts

 \rightarrow morphology, sentence structure

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Sentences

- Words \rightarrow atomic units of meaning
- Sentence \rightarrow combination of words following the rules of a language

(1) Jane bought the house

- \rightarrow the **verb** *bought* is the central element
- → the verb has two arguments: subject Jane and object house
- (2) Jane gave Alice a cookie.
 - → gave/give has three arguments: subject Jane and direct object cookie and indirect object Alice

- **Syntax** studies the arrangement of words and their relations: how to combine words into larger units such as phrases or sentences?
- Idea: capture and formalize the structure of a language
- The syntax of a language is defined by a grammar can we fully define and write up a complete grammar of language?
- Units of language
 - words: basic unit of meaning
 - phrases: sequences of words building a conceptual unit
 - clauses: group of words containing a subject and predicate and functioning as part of a complex sentence
 - sentences: grammatically independent linguistic units

Phrases

- Phrase: meaningful unit of words grouped together
- Noun Phrases: words grouped around a noun (= head of the phrase)
 - a <u>zebra</u> a cute little <u>cat</u> the <u>dog</u> that bit the postman a 100-year old <u>turtle</u> with dark green spots
- Prepositional phrases
 - <u>in</u> the supermarket <u>on</u> Wednesday <u>on</u> a plane to London
- Verbal phrases

<u>read</u> a book sleeps

Phrases

- Clause: a sequence of words that have a subject and a verb
- Clauses fall between phrases and sentences

when it rained the kids went inside

- the sentence consists of two clauses
- the second clause can also occur as a sentence

Alice remembered everything Bob said
 Alice remembered Bob's explanation

for example: noun clauses can be replaced with a noun phrase

Two types of clauses:

- main clause or independent clause: can stand alone
- subordinate clause: relies on a main clause (i.e. is dependent on it)

Alice reads a book. Alice sleeps.

S	\rightarrow	NP VP	non-terminal symbols
VP	\rightarrow	V NP	
VP	\rightarrow	V	
NP	\rightarrow	Det N	
NP	\rightarrow	Nprop	
V	\rightarrow	sleeps reads	terminal symbols
Det	\rightarrow	а	
Ν	\rightarrow	book	
Nprop	\rightarrow	Alice	

Grammars: Toy Example

- Different grammar formalism to express the structure of a sentence (for example, phrase structure grammar , dependency structures, ...)
- Parse trees: illustrate the grammatical structure of a sentence
- Phrase-structure grammar
 - Models the constituents in a sentence and how they are composed of other constituents and words
 - The inner nodes are non-terminal symbols (grammatical/lexical categories), and the leaves are terminal symbols (words)
- Dependency structures: display relationship (dependencies) between words
 - one word is the head of the sentence, dependent on a notional ROOT (mostly the verb of the main clause)
 - all other words are dependent on another word
 - all nodes are terminals

Dependency Grammar: Example

Figure from Jurafsky an Martin

Dependency vs. Constituency Trees: Example

Dependency and constituent analyses for I prefer the morning flight through Denver.

Figure from Jurafsky an Martin

Structural Ambiguities

I shot an elephant in my pajamas.

 \rightarrow who is wearing the pajamas?

Syntax across Languages

• Linguistic concepts and processes are realized differently

• Analytic languages

- syntactic information is mainly expressed by means of function words (e.g., prepositions, modifiers)
- syntactic functions (subject, object) are assigned via word order
- For example English, Norwegian, Danish

• Synthetic languages

- grammatical information is synthesized into one word by means of (inflectional) morphology (e.g. grammatical case instead of prepositions)
- relatively free word order
- For example Slavic languages, German, Finnish, Turkish
- Often no clear distinction: languages can have features of both groups

Universal Dependency Treebank

- UDP: developing cross-linguistically consistent treebank annotation for many languages
- Tree structures for English, Bulgarian, Czech and Swedish

Figure from https://universaldependencies.org/introduction.html

Linguistic Structure in Large Language Models

- Language models perform very well at many language tasks
- To what extent can these abilities be attributed to generalizable linguistic understanding vs. surface-level lexical patterns?
- Can we obtain linguistic structure from LMs?

Prompting Language Models for Linguistic Structure. Blevins et al. (2023)

Figure 1: Sequence tagging via structured prompting. Each predicted label is appended to the context along with the next word to iteratively tag the full sentence.

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

Semantics

- Semantics: study of linguistic meaning
- Lexical semantics:
 - analysis of word meanings and compositionality
 - relations between words
- Formal semantics
 - relies on logic and mathematics
 - provides precise frameworks of the relation between language and meaning

All humans are mortal Socrates is a human Socrates is mortal

• **Pragmatics**: investigates how people use language in communication "It's cold in here, isn't it?" (looks towards the open window)

Lexical Semantics: Semantic Role Labeling

- XYZ corporation bought the stock.
- They sold the stock to XYZ corporation.
- The stock was bought by XYZ corporation.
- The purchase of the stock by XYZ corporation...
- The stock purchase by XYZ corporation...
- Purchase event: described by the verbs bought, sold
- Participants: XYZ Corp and some stock
- Semantic roles *≠* syntactic subject/object
- Semantic role labeling: the task of assigning roles to spans in sentence

Example from Jurafsky an Martin

Lexical Semantics: Semantic Role Labeling

• Semantic roles help generalize different surface realizations

(20.3) John broke the window.

AGENT THEME

- (20.4) John broke the window with a rock. AGENT THEME INSTRUMENT
- (20.5) *The rock* broke the window. INSTRUMENT THEME
- (20.6) *The window broke*. THEME
- (20.7) The window was broken by John. THEME AGENT

• Selectional restrictions:

preferences that predicates express about their arguments for example the theme of *eat* is generally something edible.

Example from Jurafsky an Martin

Lexical Semantics: Word Similarity and Relatedness

• Word similarity:

(near) synonyms \leftrightarrow similar words

cat and dog are not synonyms, but similar words

- Similarity is useful for many semantic tasks for example question answering, paraphrasing and summarization
- Example from the SimLex-999 dataset

vanish disappear 9.8 belief impression 5.95 muscle bone 3.65 modest flexible 0.98 hole agreement 0.3

• Word relatedness: coffee and cup are not similar (i.e. they share no features), but are related (\rightarrow co-participating in the event of drinking coffee out of a cup)

Hill et al. (2015)

bank ¹	Gloss:	a financial institution that accepts deposits and channels the
		money into lending activities
	Examples:	"he cashed a check at the bank", "that bank holds the mortgage
		on my home"
bank ²	Gloss:	sloping land (especially the slope beside a body of water)
	Examples:	"they pulled the canoe up on the bank", "he sat on the bank of
		the river and watched the currents"

Example from Jurafsky an Martin

- What is NLP?
- Challenges in NLP
- Linguistic Concepts
- Words and Morphology
- Parts of Speech
- Sentences and Syntax
- Semantics
- Seminar: Outline and Organization

- Lectures
- Homework assignments

- Dan Jurafsky and James H. Martin (2024) Speech and Language Processing (3rd ed. draft) https://web.stanford.edu/ jurafsky/slp3/
- Hill, F., R. Reichart, and A. Korhonen. (2015) Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695.
- Duygu Atamanab, Matteo Negrib, Marco Turchib, Marcello Federico. (2017) *Linguistically Motivated Vocabulary Reduction for Neural Machine Translation from Turkish to English*. The Prague Bulletin of Mathematical Linguistics No. 108, 2017, pp. 331-342. doi: 10.1515/pralin-2017-0031