Concepts and Applications in NLP

Sequence Labeling for Parts of Speech
and Named Entities

Marion Di Marco

November 5, 2024

Credits

Based on Chapter 17 of Speech and Language Processing:
“Sequence Labeling for Parts of Speech and Named Entities”

Jurafsky and Martin (2024)

Overview

e Parts of Speech (POS): useful clues to sentence structure and
meaning

— syntactic structure: POS-tagging is an essential part in parsing
— “patterns”: English nouns are preceded by determiners and adjectives

e Named Entities: useful for tasks like question answering or
information extraction.

— Washington: name of a person, a place, or a university?

e POS tagging: assigning each word in a sequence a part of speech
like noun or verb

e Named Entity Recognition (NER): assigning words or phrases tags
like person location or organization

Outline

Word Classes

Word Classes and Parts of Speech

Word classes: loosely correspond to semantic properties
— adjectives — properties
— nouns — people, things
— verbs — activities

Parts of speech (POS): defined on the grammatical relationships
with neighbouring words and morphological properties

Closed Class: finite set of words

— mostly function words, for example pronouns and prepositions
— occur frequently and contribute to the structure of a sentence

Open Class: infinite amount of words providing lexical content

— nouns, verbs, adjectives, adverbs
— new words are coined frequently (e.g. barbiecore, greedflation)

English Word Classes

Tag Description

Example

Open Class

ADJ Adjective: noun modifiers describing properties

ADV Adverb: verb modifiers of time, place, manner

NOUN words for persons, places, things, etc.

VERB words for actions and processes

PROPN Proper noun: name of a person, organization, place, etc..
INTJ Interjection: exclamation, greeting, yes/no response, etc.

red, young, awesome

very, slowly, home, yesterday
algorithm, cat, mango, beauty
draw, provide, go

Regina, IBM, Colorado

oh, um, yes, hello

Closed Class Words

ADP Adposition (Preposition/Postposition):

spacial, temporal, or other relation
AUX Auxiliary: helping verb marking tense, aspect, mood, etc.,
CCONJ Coordinating Conjunction: joins two phrases/clauses
DET Determiner: marks noun phrase properties

NUM Numeral

PART Particle: a function word that must be associated with an-

other word

PRON Pronoun: a shorthand for referring to an entity or event
SCONJ Subordinating Conjunction: joins a main clause with a
subordinate clause such as a sentential complement

in, on, by, under

can, may, should, are

and, or, but

a, an, the, this

one, two, 2026, 11:00, hundred
s, not, (infinitive) to

she, who, I, others
whether, because

PUNCT Punctuation
Symbols like $ or emoji
Other

)
$, %
asdf, qwfg

The 17 parts of speech in the Universal Dependencies tagset (de Marneffe et al., 2021). Features

can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

English POS: Nouns

Nouns: commonly used for people, places, things and other

Common nouns
— concrete terms: mango, cat
— abstractions: algorithm, beauty
— nominalizations: (his) pacing

Some properties of common nouns
— count nouns can occur in singular and plural and can be counted
(one dog, two dogs)
— mass nouns: something is conceptualized as a homogeneous group
(snow, *two snows)

Proper nouns: names of specific persons or entities
— Bob, IBM, Italy

English POS: Verbs

Verbs refer to actions and processes

Main verbs: eat, run, laugh

Auxiliary verbs: mark semantic features of a main verb such as its tense
— has done, was written

Modal verbs: mark the mood associated with the event depicted by the
main verb

— can — ability or possibility

— may — permission or possibility

— must — necessity

Phrasal verbs: verb and a particle acting as a single unit turn down

English

POS tags

e English-specific POS tags from the Penn Treebank

Tag Description Example Tag Description Example Tag Description Example

CC coord. conj. and, but, or NNP proper noun, sing. [BM TO infinitive to to

CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops

DT determiner d, the NNS noun, plural llamas VB verb base eat

EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate

FW foreign word mea culpa POS possessive ending s VBG verb gerund eating

IN preposition/ of, in, by PRP personal pronoun [, you, he VBN verb past partici- eaten
subordin-conj ple

11 adjective yellow PRPS possess. pronoun your VBP verbnon-3sg-pr eat

JIR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats

JIS superlative adj wildest RBR comparative adv ~ faster WDT wh-determ. which, that

LS list item marker [, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who

MD modal can, should RP particle up, off WPS wh-possess. whose

NN sing or mass noun [lama SYM symbol +,%, & WRB wh-adverb how, where

Penn Treebank part-of-speech tags.

English POS Tagging: Example

(8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RE JPUNC/.

(8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN
in/ADP/IN today/NOUN/NN 's/PART/POS London/PROPN/NNP
Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

e Tagged according to Universal Dependency (UD) and the Penn tagsets

e Penn tagset is more fine-grained

— tense and participles on verbs,
— number on nouns

e London Journal of Medicine: proper noun
— all parts are marked as PROP/NNP

10

Outline

Part-of-Speech Tagging

11

POS Tagging

e Part of speech tagging: assigning a POS tag to every word in a

tokenized sentence

Input: sentence x1,xo,..., X, and a tagset

e Output: a corresponding sequence of tags yi, Y2, ..., ¥n

kg

Part of Spesch Tagger
Janet WI|| back 1he blll
x1 xz XJ)(4 Xs

The task of part-of-speech tagging: mapping from input words x1,x2, ...,

output POS tags yi.v2,....¥n -

X, to

12

POS Tagging: Disambiguation

e Words are ambiguous and can have more than one part of speech
— verb < noun:
book that flight <> hand me the book
— determiner < conjunction:
does that flight serve dinner? < | thought that your flight was earlier

e Goal of POS-tagging: resolve these ambiguities
and find the correct tag for the context

13

Ambiguous Words (English)

e Overview of ambiguous words in English:

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8.050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

[JTOEE] Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

e Most word types are not ambiguous:
for example: hesitantly is always an adverb

e Only 14-15% words of the vocabulary are ambiguous,

but they are very common and account for 55-67 % word tokens

for example: that, back, down, put, set

Ambiguous Words: Examples with back

e earnings growth took a back/JJ seat

a small building in the back/NN

a clear majority of senators back/VBP the bill

Dave began to back/VB toward the door

enable the country to buy back/RP debt

| was twenty-one back/RB then

15

English Tagging: Some Statisctics

Different tags are not equally likely:

— a can be the letter 'a’ or a determiner — determiner sense is more likely

— can can be an auxiliary or a noun — more frequently used as auxiliary

Baseline: choose the tag which is most frequent in the training corpus

Most Frequent Class Baseline: Always compare a classifier against
a baseline at least as good as the most frequent class baseline (assigning
each token to the class it occurred in most often in the training set).

The most-frequent-tag baseline has an accuracy of about 92 %!

e For comparison: accuracies on various English treebanks are 97 %
(no matter the algorithm; HMMs, CRFs, BERT perform similarly)

e Human performance: about 97 % (English)

Hn English, on the WSJ corpus, tested on sections 22-24.

16

Outline

Named Entities and Named Entity Tagging

17

Named Entities and Named Entity Tagging

e Proper nouns refer to different kinds of entities:

— Janet: person
— Stanford University: organization
— Colorado: location

e Named entities: anything that can be referred to with a proper name

e Named Entity Recognition (NER): find spans of text that constitute
proper names and tag the type of the entity

— PER (person)

— LOC (location)

— ORG (organization)

— GPE (geo-political entity)

e NEs commonly also extend to dates, times, other kinds of temporal
expressions, and even numerical expressions

18

Named Entities: Examples

Type Tag Sample Categories Example sentences

People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The TPCC warned about the cyclone.

Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.

Geo-Political Entity GPE

countries, states

Palo Alto is raising the fees for parking.

A list of generic named entity types with the kinds of entities they refer to.

Citing high fuel prices, [grg United Airlines] said [Tpg Friday] it
has increased fares by [\ionpy $6] per round trip on flights to some
cities also served by lower-cost carriers. [grg American Airlines], a
unit of [or G AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [prg United]. a unit of [org UAL Corp.],
said the increase took effect [ypp Thursday] and applies to most
routes where it competes against discount carriers, such as [[o Chicago]
to [oc Dallas] and [1 o¢ Denver] to [| oc San Francisco].

Depending on the application: extend the tag set

(genes, commercial products, works of art, ...)

19

Named Entities: Challenges

Named entity tagging: useful first step in many NLP tasks

NER has several challenges

Segmentation
— POS-tagging: assume tokenized text — one word gets one tag
— NER: find and label spans of text — identify boundaries of NEs

Ambiguities: NEs can belong to different categories
JFK — a person, the airport in New York, or any number of schools, bridges,
and streets in the United States.

[per Washington] was born into slavery on the farm of James Burroughs.
lorg Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [[g Washington] for what may well be his last state visit.
In June, [gpp Washington] passed a primary seatbelt law.

IPTENYENY Examples of type ambiguities in the use of the name Washington.

20

BIO Tagging

BIO tagging: standard approach to sequence labeling for a
span-recognition problem

Treat NER like a word-by-word sequence labeling task

— B: token that begins a span of interest
— I: tokens that occur inside a span
— O: tokens outside of any span of interest

Distinct B and | tags for the different NE classes

Variants:

— E: tag for the end of a span
— S: or a span consisting of a single word

21

BIO Tagging: Example

[per Jane Villanueva | of [or United] , a unit of [pgg United Airlines
Holding] , said the fare applies to the [| ¢ Chicago] route.

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of (0] (0] (0]
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG [-ORG
Holding [-ORG [-ORG E-ORG
discussed (0] O (0]
the 0} (0] (0]
Chicago I-LOC B-LOC S-LOC
route (0] (0] (0]

0} (0] (0]

NER as a sequence model, showing 10, BIO, and BIOES taggings.

22

Outline

HMM Part-of-Speech Tagging

23

Sequence Labeling

e Sequence Labeling: assign a label to each token in a sentence

e Hidden Markov Models (HMM) are probabilistic sequence models:

given a sequence of units, it computes a probability distribution over
possible label sequences and then chooses the best one

e HMMs are based on Markov chains

e Markov Chain: models the probabilities of sequences of random
variables, states, which can take values from some set (e.g. words)

e Assumption: to predict the future, only the current state matters

24

Markov Model

(b)
A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution 7 is required; setting 7 = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

Markov Assumption: P(gq; = a|qi...qi-1) = P(q; = alqi-1)
Nodes: states

Edges: transitions with probabilities
(values of arcs leaving a state must sum to 1)

25

Markov Model: Definition

Formally, a Markov chain is specified by the following components:

0=q192...9n
A=aaz...ay1...ayy a transition probability matrix A, each a;; represent-

T=m,m,...

3 IN

a set of V states

ing the probability of moving from state i to state j, s.t.
Z_r;:l ajj = 1 Vi

an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
Some states j may have 7; =0, meaning that they cannot
be initial states. Also, >/ m; = 1

26

Hidden Markov Models

e Markov chains are useful to compute the probability of a sequence of
observable events

e Some events are not observable, but hidden:
for example, POS tags in a sentence

= we see words and must infer the tags from the word sequence

e Hidden Markov Model (HMM): combines observed events
(words in text) and hidden events (POS tags)

27

Hidden Markov Model: Definition

O=q1q2...9n a set of N states

A=ay...ajj...ayy atransition probability matrix A, each g;; representing the probability
of moving from state i to state j, s.t. E?‘]:l ajj=1 Vi

B = bj(o;) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o; (drawn from a
vocabulary V = vy, v3,...,vy) being generated from a state g;

T=7,M,... Ay an initial probability distribution over states. m; is the probability that
the Markov chain will start in state i. Some states j may have m; = 0,
meaning that they cannot be initial states. Also, > ;| 7; = 1

e Input O = 010;...07: sequence of T observations (from vocabulary V)

e Simplifying assumptions (first-order HMM):
Markov Assumption: P(q;|q1...qi-1) = P(qilgi-1)
Output Independence: P(oj|q;...q;...qT, 01...0...01) = P(0j|q;)

28

Components of a Hidden Markov Model

e HMMs use two sets of probabilities (A and B)
e Probabilities are computed by maximum likelihood estimates
based on counts in a corpus

e Tag transition probabilities P(t;|t;_1) = %

probability of a tag occurring given the previous tag (A probabilities)

e Emission probabilities P(w;|t;) = %

probability, that a given tag is associated with a given word (B probabilities)

Note: we are not asking “what is the most likely tag for word w?"

Instead we ask: “if | were to generate a tag=t, how likely is it that the
word would be w'?

20

Components of a Hidden Markov Model: Example

e Transition probabilities:

Clti1,t)
C(fj |}
In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

P(tiltioy) = (17.8)

_ C(MD,VB) 10471

P(VBMD) = COMD) = =% 17.9)

e Emission probabilities:

The B emission probabilities, P(w;|t;), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

Clti, wi)
Plwilt;) = 17.10
(wilt) C(fi) ()
Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times; C| il 4046
plwitimp) — SHPwilD) 31 (17.11)

C(MD) 13124

HMM: lllustration

B,
P("aardvark” | MD)
P(“will" | MD)
P(the' IMD) [$m - —=-————
. By
P(“back” | MD)
P("aardvark" | NN)
P("zebra" | MD) o
P(*will” | NN)
P('the" | NN)
By R
P("aardvark" | VB) f(B
Pwill' | VB) P("zebra" | NN)
P("the" | VB)
P(back” | VB)
P("zebra" | VB)
IO G An illustration of the two parts of an HMM representation: the A transition

probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

e |llustration for three states of an HMM
e The full tagger has a state for each tag

31

HMM Tagging as Decoding

e Decoding: determining the sequence of hidden variables corresponding
to the sequence of observations:
Given an HMM X = (A, B) and a sequence of observations O = o1, 0>...07,
find the most probable sequence of states @ = g1, g, g3...9T

e POS-tagging: choose tag sequence ti...t, that is most probable given
the observation sequence ol n words wy...w,
fin = argmax P(ry .. tywy.owy) (17.12)
.

I
e Bayes's rule:

(17.13)

. Plwy.oowygltp ot P(1y -1,
n;,,:argmax { | n| | n) (1 n}
1odn P(Wl...l‘l»’”)

e Simplify by dropping the denominator:

fiop = argmax P(wy..owy|ty .. 10 P(t1 .. ty) (17.14)

ooty

32

HMM Tagging as Decoding

e HMM simplifying assumption 1: output independence
probability of a word appearing depends only on its own tag, independent of
neighboring words and tags

n
P(wi...walty..ty) & [POwilt) (17.15)
i=1

e HMM simplifying assumption 2: Markov assumption
probability of a tag is dependent only on the previous tag

n
P(ty...ta) = [[Piltir) (17.16)
i=1

e Apply the simplifying assumptions:
,, emissiontransition

. —— ——
[= argmax P(1y ...ty |wy . ..wy) ::argmax]__[Plwilt;) P(ti|ti1) (17.17)

fin feeta G

e The two parts correspond neatly to the B emission probability
and A transition probability

33

The Viterbi Algorithm

Decoding algorithm for HMMs

Idea: recursively compute an optimal sequence from optimal solutions
for sub-problems (dynamic programming)

Probability matrix or lattice
— one column for each observation o;
— one row for each state g;
— each column has a cell for each state g;

Cells v¢(j) represent the probability that the HMM is in state j
— after seeing the first t observations

— passing through the most probable state sequence ¢;...g; 1
— given the HMM X .

Cells v¢(j): recursively taking the most probable path to this cell

vi (/) =, max 1P(£Z|-~q;—|.01|02---0:,1?1 = j|A) (17.18)

34

The Viterbi Algorithm

NNP NNP

S

Janet will back the bill

ST WBY A sketch of the lattice for Janet will back the bill, showing the possible tags
(g;) for each word and highlighting the path corresponding to the correct tag sequence through
the hidden states. States (parts of speech) which have a zero probability of generating a
particular word according to the B matrix (such as the probability that a determiner DT will
be realized as Janet) are greyed out.

35

The Viterbi Algorithm

e Cells are filled recursively

e Probability of being in every state at time t — 1 already computed: take
most probable extension of the paths that lead to current cell

N

e For given state g —j at time t: vi(j) = maxvi1(i) ai; bj(or)

ve—1 (i)

bj(o,)

the previous Viterbi path probability from the previous time step
the transition probability from previous state ¢; to current state g;

the state observation likelihood of the observation symbol o, given
the current state j

36

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step
viterbi[s,1]4 m; * bs(o1)
backpointer(s,1]<0
for each time step 7 from 2 to 7 do ; recursion step
for each state s from 1 to N do
viterbi[s,t] < Irxllla\lj)‘(viterbils',t — 1] * ay 5 * by(o;)

N
backpointer(st] < argmax viterbils',t — 1] * ag 5 * by(o;)

§=1
N . . L
bestpathprob < max viterbils,T| ; termination step
s=1
. N . . L
bestpathpointer < argmax viterbils,T) ; termination step

s=1
bestpath < the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

IJEMYBUBI] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do _

viterbi[s,1]1« 1y * bs(o)
backpointer{s,1]<0
for each time step # from 2 to T do ; recursion step
for each state s from 1 to N do
viterbi[s,t] <—rr:1,1%)‘< viterbils',t — 1] * ay ; * by(or)

N
backpointer[s,t] < argmax viterbils',t — 1] * ay s * by(or)

s=1
N . . L
bestpathprob <« max viterbi[s, T] ; termination step
s=1
. N . . L
bestpathpointer < argmax viterbi[s,T] ; termination step

s=1

bestpath < the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

IRV BUBT] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step
viterbi[s,1]1« 1y * bs(o)
backpointer{s,1]<0

for each time step # from 2 to 7'do _

for each state s from 1 to N do
N
viterbi[s,t] < max viterbils',t — 1] * ag s * by(or)
s'=1 i

N
backpointer[s,t] < argmax viterbils',t — 1] * ay s * by(or)

s=1
N . . L
bestpathprob <« max viterbi[s, T] ; termination step
s=1
. N . . L
bestpathpointer < argmax viterbi[s,T] ; termination step

s=1

bestpath < the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

IRV BUBT] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step
viterbi[s,1]1« 1y * bs(o)
backpointer{s,1]<0

for each time step # from 2 to 7'do _

viterbi[s,t](—m,ax viterbils',t — 1] * ag s * by(or) I
s'=1 .

. N . .
backpointer[s,t] < argmax viterbils',t — 1] * ay * bs(or)
§'=1

N . . L
bestpathprob <« max viterbi[s, T] ; termination step
s=1

. N . . L
bestpathpointer < argmax viterbi[s,T] ; termination step
s=1

bestpath < the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

IRV BUBT] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step
viterbi[s,1]1« 1y * bs(o)
backpointer{s,1]<0
for each time step # from 2 to T do ; recursion step
for each state s from 1 to N do
viterbi[s,t] <—rr:1,1%)‘< viterbils',t — 1] * ay ; * by(or)

N
backpointer[s,t] < argmax viterbils',t — 1] * ay s * by(or)

s=1
N . .
bestpathprob misx viterbis | - Termination
s=1
. N . . L
bestpathpointer < argmax viterbi[s,T] ; termination step

s=1

bestpath < the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

IRV BUBT] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi Algorithm: Example

e Input sentence: Janet will back the bill

DT

RB

NN

JJ

VB

MD

NNP

Janet | will | back | the | bill

The Viterbi Algorithm: Example

NNP MD VB 1A NN RB DT

<§> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026

NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025

MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041

VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231 A
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036

NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068

RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479

DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017
The A transition probabilities P(#;r;_) computed from the WSJ corpus with-

out smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.796 N

<5 is the start token. Vi («’) = rln_a]x vi-1(i) aijb; (OF)

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

[JPTTRYRR] Observation likelihoods B computed from the WSJ corpus without smooth-
ing, simplified slightly.

43

The Viterbi Algorithm: Example

e Input sentence: Janet will back the bill

DT

RB

NN

JJ

VB

MD

P(MD| < s >) » P(Janet|MD)

NNP

P(NNP| < s >) * P(Janet|NNP)

Janet

will

back

the

bill

Column 1 (Janet): product of the 7 transition probability (start
probability from < s >) and the observation likelihood of Janet

44

The Viterbi Algorithm: Example

e Input sentence: Janet will back the bill

DT

RB

NN

JJ

VB

MD

0.0006 = 0

NNP

0.02767 % 0.000032

Janet

will

back

the

bill

45

The Viterbi Algorithm: Example

e Input sentence: Janet will back the bill

DT 0
RB 0
NN [0 v(NNP, Janet) » P(NN|NNP) + P(will[NN
JJ 0
VB |0 v(NNP, Janet) + P(VB|NNP) + P(will| VB)
MD |0 v(NNP, Janet) » P(MD|NNP) * P(will| MD)
NNP | 8.85x10-6

Janet will

46

The Viterbi Algorithm: Example

v[RB,back] = max{v[NN,will[*P(RB|NN)*P(back|RB),
v[VB,will|*P(RB|VB)*P (back|RB),
v[MD,will]*P(RB|MD)*P (back|RB)}

Vv[NN,back] = max{v[NN,will]*P(NN|NN)*P(back|NN),
v[VB,will*P(NN|VB)*P(back|NN),
v[MD,will]*P(NN|MD)*P(back|NN)}

v[JJ,back] = max{v[NN,will[*P(JJ|NN)*P(back|JJ),
v[VB,will[*P(JJ|VB)*P(back|JJ),
vIMD,will]*P(JJ|MD)*P(back|JJ)}

. V[VB,back] = max{v[NN,will[*P(VB|NN)*P(back|VB),
v[VB,will[*P(VB|VB)*P (back|VB),
v[MD,will[*P(VB|MD)*P (back|VB)}

a7

The Viterbi Algorithm: Example

DT 0 0 0
RB 0 0 *okk
NN 0 %k k kK k
JJ 0 0 ko
VB 0 *Wf;**
MD |0 U770
NNP | 8.85x10-6" 0 0
Janet will | back

e Assemble the best tag sequence?

— use backpointers
— trace backwards from the max score at the last time step

Outline

Conditional Random Fields (CRFs)

49

Challenges for HMMs

e Unknown words: proper names, acronyms, novel nouns and verbs

e Add features to hep handle unknown words

— capitalization — likely proper nouns
— morphology — suffix to indicate word class
— info on previous or following word — the is unlikely to precede a verb

e Difficult to include features into HMMs
all computation is based on the two probabilities P(tag|tag) and P(word|tag).
How to encode extra knowledge into these probabilities?
Complicated conditioning — more and more difficult

e Linear chain CRFs

50

CRF: Introduction and Definition

e Given a sequence of input words X = xi...x,
compute a sequence of output tags Y = yi...y,

e HMM: compute the best tag sequence that maximizes P(Y|X) relying
on Bayes' rule and the likelihood P(X]|Y)
V' = argmaxp(Y|X)
Y

= arg;n'dxp(?fll’)ﬂ(l’)

= arg;naXHp(xflys) [pGilyi-1)
i i

e CRF: compute the posterior p(Y|X) directly, training the CRF to
discriminate among the possible tag sequences

¥ = argmaxP(Y|X)
rYey

51

CRFs: Introduction and Definition

e CRF: assigns a probability to an entire output (tag) sequence Y, out of
all possible sequences), given the entire input (word) sequence X.

e CRFs do not compute a probability for each tag at each time step.
Instead: log-linear functions over a set of relevant features.
Local features are aggregated and normalized to produce a global
probability for the whole sequence

e Feature function F: maps input sequence X and output sequence Y to
a feature vector

52

CRFs: Definition

e K features, with a weight wy for each feature Fy:
exp (Z wieFe (X, Y))
pYlx) = —=L 2
Z exp (Zka;(X,Y’))
Y'ey k=1

Pull out denominator into a function Z(X)
K
PYIX) = Soew (Zm(m))

k=1

K
Z exp (Zkak(X.Y’))

¥Y'ey k=1

Z(X)

K functions Fi (X, Y') are called global features:
each one is a property of the input sequence X and the output sequence Y

Compute by decomposing into a sum of local features for each position
iinY
(X ¥) = filyior.viX.0)
i=1

53

CRFs: Introduction and Definition

e Each local features fx in a linear-chain CRF can make use of

— the current output token y;

— the previous output token y; 1

— the entire input string X (or any subpart of it)
— the current position i

e Constraint to current and previous output tokens y; and y;_1:
characterizes a linear chain CRF
(— this limitation allows to apply a version of Viterbi algorithm)

e General CRF: make use of any output token
(— more complex inference)

54

Features in a CRF POS tagger

e Each local feature f, at position i can depend on any information from
(}/i—la)/th ’)

e Assume that all features take on the value 1 or 0
1{x; = the, y; = DET}
][{y,' = PROPN, Xip1 = Street, Yi-1 = NUM}
1{y; = VERB, y;_; = AUX}

e Feature templates populate the set of features from every instance in
the data set
f3743: yi = VB and x; = back
fis6: yi=VBand y;; =MD
(yhxf)'.‘ <)‘:‘1)’i—1)s (,Vf:\xf—| :xi'+2> fg@?}gi ¥i= VB and Xi—1 = will and Xi+2 = bill

Janet/NNP will/MD back/VB the/DT bill/NN

55

Features in a CRF POS tagger

Word shape features to handle unknown words

Represent abstract letter pattern of the word
lower-case letters — x

upper-case letters — X

— numbers - d

retain punctuation

Prefix and suffix features

Example: well-dressed
prefix(x;) =w
prefix(x;) = we
suffix(x;) = ed
suffix(x;) =d
word-shape(x;) = XXXX-XXXXXXX

56

Outline

POS tagging in Morphologically Rich Languages

57

POS tagging in Morphologically Rich Languages

e Morphologically rich languages
— large vocabulary — data sparsity
— more information contained

e POS tagger for morphologically rich languages need to label more
information (e.g. case or gender)

e Tagsets for morphologically rich languages: sequences of morphological
tags

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen
The trace on the floor should be cleaned.

2. Uzerinde parmak izin kalmis. iz + Noun+A3sg+P2sg+Nom
Your finger print is left on (it).

3. Igeri girmek icin izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom
You need permission to enter.

e Results in large tag set — combine with morphological analysis

58

Outline

Summary

59

Summary

e Languages generally have a small set of closed class words that are
highly frequent, ambiguous, and act as function words, and open-class
words like nouns, verbs and adjectives

e Part-of-speech tagging: the process of assigning a part-of-speech label
to each of a sequence of words

e The probabilities in HMM taggers: estimated by maximum likelihood
estimation on tag-labeled training corpora.

e The Viterbi algorithm is used for decoding, finding the most likely tag
sequence

e CRF taggers: a log-linear model that can choose the best tag sequence
given an observation sequence, based on a set of features

60

	Word Classes
	Part-of-Speech Tagging
	Named Entities and Named Entity Tagging
	HMM Part-of-Speech Tagging
	Conditional Random Fields (CRFs)
	POS tagging in Morphologically Rich Languages
	Summary

