Concepts and Applications in NLP Sequence Labeling for Parts of Speech and Named Entities

Marion Di Marco

November 5, 2024

Based on Chapter 17 of *Speech and Language Processing*: "Sequence Labeling for Parts of Speech and Named Entities" Jurafsky and Martin (2024)

- Parts of Speech (POS): useful clues to sentence structure and meaning
 - syntactic structure: POS-tagging is an essential part in parsing
 - "patterns": English nouns are preceded by determiners and adjectives
- Named Entities: useful for tasks like question answering or information extraction.
 - Washington: name of a person, a place, or a university?

- **POS tagging**: assigning each word in a sequence a part of speech like noun or verb
- Named Entity Recognition (NER): assigning words or phrases tags like person location or organization

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages
- Summary

Word Classes and Parts of Speech

- Word classes: loosely correspond to semantic properties
 - adjectives \rightarrow properties
 - nouns \rightarrow people, things
 - verbs \rightarrow activities
- Parts of speech (POS): defined on the grammatical relationships with neighbouring words and morphological properties
- Closed Class: finite set of words
 - mostly function words, for example pronouns and prepositions
 - occur frequently and contribute to the structure of a sentence
- Open Class: infinite amount of words providing lexical content
 - nouns, verbs, adjectives, adverbs
 - new words are coined frequently (e.g. barbiecore, greedflation)

English Word Classes

	Tag	Description	Example					
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome					
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday					
Ū	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty					
Den	VERB	words for actions and processes	draw, provide, go					
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado					
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello					
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under					
s		spacial, temporal, or other relation						
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are					
à	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but					
ass	DET	Determiner: marks noun phrase properties	a, an, the, this					
ū	NUM	Numeral	one, two, 2026, 11:00, hundred					
sed	PART	Particle: a function word that must be associated with an-	's, not, (infinitive) to					
Clo		other word						
Ŭ	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others					
	SCONJ	Subordinating Conjunction: joins a main clause with a	whether, because					
		subordinate clause such as a sentential complement						
ы	PUNCT	Punctuation	;,0					
Othe	SYM	Symbols like \$ or emoji	\$, %					
0	Χ	Other	asdf, qwfg					
Fion	re 8.1 Th	The stand of the stand of the Universal Dependencies target (de Margaffe et al. 2021). Eastures						

can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

English POS: Nouns

- Nouns: commonly used for people, places, things and other
- Common nouns
 - concrete terms: mango, cat
 - abstractions: *algorithm*, *beauty*
 - nominalizations: (his) pacing
- Some properties of common nouns
 - count nouns can occur in singular and plural and can be counted (one dog, two dogs)
 - mass nouns: something is conceptualized as a homogeneous group (snow, *two snows)
- Proper nouns: names of specific persons or entities
 - Bob, IBM, Italy

- Verbs refer to actions and processes
- Main verbs: eat, run, laugh
- Auxiliary verbs: mark semantic features of a main verb such as its tense - has done, was written
- Modal verbs: mark the mood associated with the event depicted by the main verb
 - $can \rightarrow ability \text{ or possibility}$
 - $may \rightarrow permission or possibility$
 - $must \rightarrow necessity$
- Phrasal verbs: verb and a particle acting as a single unit turn down

• English-specific POS tags from the Penn Treebank

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	ТО	infinitive to	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlaty. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+, %, &	WRB	wh-adverb	how, where

Figure 8.2 Penn Treebank part-of-speech tags.

English POS Tagging: Example

- (8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS there/ADV/RB ./PUNC/.
- (8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN in/ADP/IN today/NOUN/NN 's/PART/POS London/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP
- Tagged according to Universal Dependency (UD) and the Penn tagsets
- Penn tagset is more fine-grained
 - tense and participles on verbs,
 - number on nouns
- London Journal of Medicine: proper noun
 - all parts are marked as PROP/NNP

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages
- Summary

POS Tagging

- Part of speech tagging: assigning a POS tag to every word in a tokenized sentence
- Input: sentence $x_1, x_2, ..., x_n$ and a tagset
- Output: a corresponding sequence of tags $y_1, y_2, ..., y_n$

output POS tags $y_1, y_2, ..., y_n$.

- Words are ambiguous and can have more than one part of speech
 - verb \leftrightarrow noun:

<u>book</u> that flight ↔ hand me the <u>book</u>

- determiner ↔ conjunction:
 does <u>that</u> flight serve dinner? ↔ I thought <u>that</u> your flight was earlier
- Goal of POS-tagging: resolve these ambiguities and find the correct tag for the context

Ambiguous Words (English)

• Overview of ambiguous words in English:

Types:		WS	SJ	Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2 + tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2 + tags)	711,780	(55%)	786,646	(67%)
Tag ambiguit	u in the Brown and	WCLOOM	and (Trac	honly 2.45	to a to acot)

e 8.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

- Most word types are not ambiguous: for example: hesitantly is always an adverb
- Only 14-15 % words of the vocabulary are ambiguous, but they are very common and account for 55-67 % word *tokens* for example: *that, back, down, put, set*

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP debt
- I was twenty-one back/RB then

- Different tags are not equally likely:
 - a can be the letter 'a' or a determiner \rightarrow determiner sense is more likely
 - can can be an auxiliary or a noun \rightarrow more frequently used as auxiliary
- Baseline: choose the tag which is most frequent in the training corpus

Most Frequent Class Baseline: Always compare a classifier against a baseline at least as good as the most frequent class baseline (assigning each token to the class it occurred in most often in the training set).

- The most-frequent-tag baseline has an accuracy of about 92 $\%^1$
- For comparison: accuracies on various English treebanks are 97 % (no matter the algorithm; HMMs, CRFs, BERT perform similarly)
- Human performance: about 97 % (English)

¹In English, on the WSJ corpus, tested on sections 22-24.

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages

Summary

Named Entities and Named Entity Tagging

- Proper nouns refer to different kinds of entities:
 - Janet: person
 - Stanford University: organization
 - Colorado: location
- Named entities: anything that can be referred to with a proper name
- Named Entity Recognition (NER): find spans of text that constitute proper names and tag the type of the entity
 - PER (person)
 - LOC (location)
 - ORG (organization)
 - GPE (geo-political entity)
- NEs commonly also extend to *dates, times*, other kinds of *temporal expressions*, and even *numerical expressions*

Туре	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.
Figure 8.5 A list of g	eneric	named entity types with the kir	nds of entities they refer to.

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Depending on the application: extend the tag set (genes, commercial products, works of art, ...)

Named Entities: Challenges

- Named entity tagging: useful first step in many NLP tasks
- NER has several challenges
- Segmentation
 - POS-tagging: assume tokenized text \rightarrow one word gets one tag
 - NER: find and label spans of text \rightarrow identify boundaries of NEs
- Ambiguities: NEs can belong to different categories
 JFK → a person, the airport in New York, or any number of schools, bridges, and streets in the United States.

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name *Washington*.

- **BIO tagging**: standard approach to sequence labeling for a span-recognition problem
- Treat NER like a word-by-word sequence labeling task
 - B: token that *begins* a span of interest
 - I: tokens that occur *inside* a span
 - O: tokens outside of any span of interest
- Distinct B and I tags for the different NE classes
- Variants:
 - E: tag for the *end* of a span
 - S: or a span consisting of a *single* word

[PER Jane Villanueva] of [$_{ORG}$ United], a unit of [$_{ORG}$ United Airlines Holding], said the fare applies to the [$_{LOC}$ Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	0	0	0
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	0	0	0
the	0	0	0
Chicago	I-LOC	B-LOC	S-LOC
route	0	0	0
	0	0	0

Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages

Summary

- Sequence Labeling: assign a label to each token in a sentence
- Hidden Markov Models (HMM) are probabilistic sequence models: given a sequence of units, it computes a probability distribution over possible label sequences and then chooses the best one
- HMMs are based on Markov chains
- Markov Chain: models the probabilities of sequences of random variables, *states*, which can take values from some set (e.g. words)
- Assumption: to predict the future, only the current state matters

Markov Model

Figure 8.8 A Markov chain for weather (a) and one for words (b), showing states and transitions. A start distribution π is required; setting $\pi = [0.1, 0.7, 0.2]$ for (a) would mean a probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

- Markov Assumption: $P(q_i = a | q_1 \dots q_{i-1}) = P(q_i = a | q_{i-1})$
- Nodes: states
- Edges: transitions with probabilities

(values of arcs leaving a state must sum to 1)

Formally, a Markov chain is specified by the following components:

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11}a_{12}\ldots a_{N1}\ldots a_{NN}$	a transition probability matrix A , each a_{ij} represent-
	ing the probability of moving from state i to state j , s.t.
	$\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the
	probability that the Markov chain will start in state <i>i</i> .
	Some states <i>j</i> may have $\pi_j = 0$, meaning that they cannot
	be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

- Markov chains are useful to compute the probability of a sequence of *observable* events
- Some events are not observable, but *hidden*: for example, POS tags in a sentence
- \Rightarrow we see words and must infer the tags from the word sequence

• Hidden Markov Model (HMM): combines *observed* events (words in text) and *hidden* events (POS tags)

$Q = q_1 q_2 \qquad q_N$	a set of N states
$Q = q_1 q_2 \dots q_N$	a set of it states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties, each expressing the probability of an observation o_t (drawn from a
	vocabulary $V = v_1, v_2,, v_V$) being generated from a state q_i
$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state <i>i</i> . Some states <i>j</i> may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

- Input $O = o_1 o_2 \dots o_T$: sequence of T observations (from vocabulary V)
- Simplifying assumptions (first-order HMM): Markov Assumption: P(q_i|q₁...q_{i-1}) = P(q_i|q_{i-1}) Output Independence: P(o_i|q₁...q_i...q_T, o₁...o_i...o_T) = P(o_i|q_i)

- HMMs use two sets of probabilities (A and B)
- Probabilities are computed by maximum likelihood estimates based on counts in a corpus
- Tag transition probabilities $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$ probability of a tag occurring given the previous tag (A probabilities)
- Emission probabilities P(w_i|t_i) = C(t_i,w_i)/C(t_i) probability, that a given tag is associated with a given word (B probabilities) Note: we are not asking "what is the most likely tag for word w?" Instead we ask: "if I were to generate a tag=t, how likely is it that the word would be w"?

Components of a Hidden Markov Model: Example

• Transition probabilities:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$
(17.8)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed by VB 10471, for an MLE estimate of

$$P(VB|MD) = \frac{C(MD, VB)}{C(MD)} = \frac{10471}{13124} = .80$$
(17.9)

• Emission probabilities:

The *B* emission probabilities, $P(w_i|t_i)$, represent the probability, given a tag (say MD), that it will be associated with a given word (say *will*). The MLE of the emission probability is

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$
(17.10)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with *will* 4046 times:

$$P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$$
(17.11)

HMM: Illustration

Figure 8.9 An illustration of the two parts of an HMM representation: the *A* transition probabilities used to compute the prior probability, and the *B* observation likelihoods that are associated with each state, one likelihood for each possible observation word.

- Illustration for three states of an HMM
- The full tagger has a state for each tag

HMM Tagging as Decoding

Decoding: determining the sequence of hidden variables corresponding to the sequence of observations:
 Given an HMM λ = (A, B) and a sequence of observations O = o₁, o₂...o_T,

find the most probable sequence of states $Q = q_1, q_2, q_3...q_T$

• POS-tagging: choose tag sequence $t_1...t_n$ that is most probable given the observation sequence of *n* words $w_1...w_n$

$$\hat{t}_{1:n} = \operatorname*{argmax}_{t_1...t_n} P(t_1...t_n | w_1...w_n)$$
(17.12)

• Bayes's rule:

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1...w_n | t_1...t_n) P(t_1...t_n)}{P(w_1...w_n)}$$
(17.13)

• Simplify by dropping the denominator:

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n | t_1...t_n) P(t_1...t_n)$$
(17.14)

HMM Tagging as Decoding

 HMM simplifying assumption 1: output independence probability of a word appearing depends only on its own tag, independent of neighboring words and tags

$$P(w_1...w_n|t_1...t_n) \approx \prod_{i=1}^n P(w_i|t_i)$$
 (17.15)

• HMM simplifying assumption 2: Markov assumption probability of a tag is dependent only on the previous tag

$$P(t_1...t_n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$
 (17.16)

• Apply the simplifying assumptions:

î

$$\lim_{t_{1:n}} = \operatorname*{argmax}_{t_{1...t_n}} P(t_1 \dots t_n | w_1 \dots w_n) \approx \operatorname*{argmax}_{t_{1...t_n}} \prod_{i=1}^n \underbrace{\operatorname{emission transition}}_{P(w_i | t_i)} P(t_i | t_{i-1})$$
(17.17)

• The two parts correspond neatly to the *B* emission probability and *A* transition probability

- Decoding algorithm for HMMs
- Idea: recursively compute an optimal sequence from optimal solutions for sub-problems (dynamic programming)
- Probability matrix or lattice
 - one column for each observation o_t
 - one row for each state q_i
 - \rightarrow each column has a cell for each state q_i
- Cells $v_t(j)$ represent the probability that the HMM is in state j
 - after seeing the first t observations
 - passing through the most probable state sequence $q_1...q_{t-1}$
 - given the HMM λ .
- Cells $v_t(j)$: recursively taking the most probable path to this cell $v_t(j) = \max_{q_1,\dots,q_{t-1}} P(q_1\dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j|\lambda)$ (17.18)

Figure 17.11 A sketch of the lattice for *Janet will back the bill*, showing the possible tags (q_i) for each word and highlighting the path corresponding to the correct tag sequence through the hidden states. States (parts of speech) which have a zero probability of generating a particular word according to the *B* matrix (such as the probability that a determiner DT will be realized as *Janet*) are greyed out.

- Cells are filled recursively
- Probability of being in every state at time t 1 already computed: take most probable extension of the paths that lead to current cell
- For given state q j at time t: $v_t(j) = \sum_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         : initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s',s}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow \operatorname{argmax}^{N} viterbi[s', t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow \operatorname{argmax}^{N} viterbi[s, T]; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob create a path probability matrix viterbi[N,T]Initialization for each state s from 1 to N do viterbi[s,1] $\leftarrow \pi_s * b_s(o_1)$ *backpointer*[s,1] $\leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do *viterbi*[s,t] $\leftarrow \underset{s'=1}{\overset{N}{\longrightarrow}}$ *viterbi*[s',t-1] * $a_{s',s}$ * $b_s(o_t)$ *backpointer*[s,t] $\leftarrow \operatorname{argmax}^{N} viterbi[s', t-1] * a_{s',s} * b_{s}(o_{t})$ $bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$; termination step $bestpathpointer \leftarrow \arg_{max}^{N} viterbi[s, T]$; termination step *bestpath* \leftarrow the path starting at state *bestpathpointer*, that follows backpointer[] to states back in time return bestpath, bestpathprob


```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1]\leftarrow 0
for each time step t from 2 to T do
                                                       ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow \operatorname{argmax}^{N} viterbi[s', t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]
                                                            Termination
bestpathpointer \leftarrow \arg_{max}^{N} viterbi[s, T]; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

• Input sentence: Janet will back the bill

	Janet	will	back	the	bill
NNP					
MD					
VB					
JJ					
NN					
RB					
DT					

The Viterbi Algorithm: Example

	NNP	MD	VB	JJ	NN	RB	DT	
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231	
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	

Figure 17.12 The *A* transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.796 $\langle s \rangle$ is the start token.

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0 -
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 17.13 Observation likelihoods *B* computed from the WSJ corpus without smoothing, simplified slightly.

А

 $v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$

The Viterbi Algorithm: Example

• Input sentence: Janet will back the bill

DT					
RB					
NN					
JJ					
VB					
MD	P(MD < s >) * P(Janet MD)				
NNP	P(NNP < s >) * P(Janet NNP)				
	Janet	will	back	the	bill

Column 1 (*Janet*): product of the π transition probability (start probability from $\langle s \rangle$) and the observation likelihood of *Janet*

• Input sentence: Janet will back the bill

DT					
RB					
NN					
IJ					
VB					
MD	0.0006 * 0				
NNP	0.02767 * 0.000032				
	Janet	will	back	the	bill

• Input sentence: Janet will back the bill

DT	0	
RB	0	
NN	0	v(NNP, Janet) * P(NN NNP) * P(will NN)
JJ	0	
VB	0	v(NNP, Janet) * P(VB NNP) * P(will VB)
MD	0	v(NNP, Janet) * P(MD NNP) * P(will MD)
NNP	8.85 <i>x</i> 10 – 6	
	Janet	will

The Viterbi Algorithm: Example

DT	0	0	0
RB	0	0	***
NN	0	***	***
JJ	0	0	***
VB	0	***	***
MD	0	***	0
NNP	8.85x10 – 6<	0	0
	Janet	will	back

- Assemble the best tag sequence?
 - use backpointers
 - trace backwards from the max score at the last time step

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages

Summary

- Unknown words: proper names, acronyms, novel nouns and verbs
- Add features to hep handle unknown words
 - capitalization \rightarrow likely proper nouns
 - morphology \rightarrow suffix to indicate word class
 - info on previous or following word \rightarrow *the* is unlikely to precede a verb
- Difficult to include features into HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag). How to encode extra knowledge into these probabilities? Complicated conditioning → more and more difficult
- Linear chain CRFs

CRF: Introduction and Definition

- Given a sequence of input words X = x₁...x_n compute a sequence of output tags Y = y₁...y_n
- HMM: compute the best tag sequence that maximizes P(Y|X) relying on Bayes' rule and the likelihood P(X|Y)

$$\hat{Y} = \operatorname*{argmax}_{Y} p(Y|X)$$

=
$$\operatorname*{argmax}_{Y} p(X|Y) p(Y)$$

=
$$\operatorname*{argmax}_{Y} \prod_{i} p(x_{i}|y_{i}) \prod_{i} p(y_{i}|y_{i-1})$$

• CRF: compute the posterior p(Y|X) directly, training the CRF to discriminate among the possible tag sequences

$$\hat{Y} = \operatorname*{argmax}_{Y \in \mathcal{Y}} P(Y|X)$$

- CRF: assigns a probability to an entire output (tag) sequence Y, out of all possible sequences \mathcal{Y} , given the entire input (word) sequence X.
- CRFs do not compute a probability for each tag at each time step. Instead: log-linear functions over a set of relevant features. Local features are aggregated and normalized to produce a global probability for the whole sequence
- Feature function F: maps input sequence X and output sequence Y to a feature vector

CRFs: Definition

• K features, with a weight w_k for each feature F_k :

$$p(Y|X) = \frac{\exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)}{\sum_{Y' \in \mathcal{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)}$$

• Pull out denominator into a function Z(X)

$$p(Y|X) = \frac{1}{Z(X)} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)$$
$$Z(X) = \sum_{Y' \in \mathcal{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)$$

- K functions F_k(X, Y) are called global features:
 each one is a property of the input sequence X and the output sequence Y
- Compute by decomposing into a sum of local features for each position *i* in *Y*

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$

CRFs: Introduction and Definition

- Each local features f_k in a linear-chain CRF can make use of
 - the current output token y_i
 - the previous output token y_{i-1}
 - the entire input string X (or any subpart of it)
 - the current position *i*
- Constraint to current and previous output tokens y_i and y_{i-1}: characterizes a linear chain CRF (→ this limitation allows to apply a version of Viterbi algorithm)
- General CRF: make use of any output token (→ more complex inference)

- Each local feature f_k at position i can depend on any information from (y_{i-1}, y_i, X, i)
- Assume that all features take on the value 1 or 0 $1 \{x_i = the, y_i = \text{DET}\}$ $1 \{y_i = \text{PROPN}, x_{i+1} = Street, y_{i-1} = \text{NUM}\}$ $1 \{y_i = \text{VERB}, y_{i-1} = \text{AUX}\}$
- Feature templates populate the set of features from every instance in the data set

 $\begin{array}{l} f_{3743:} \; y_i = \mathrm{VB} \; \mathrm{and} \; x_i = \mathrm{back} \\ f_{156:} \; y_i = \mathrm{VB} \; \mathrm{and} \; y_{i-1} = \mathrm{MD} \\ f_{99732:} \; y_i = \mathrm{VB} \; \mathrm{and} \; x_{i-1} = \mathrm{will} \; \mathrm{and} \; x_{i+2} = \mathrm{bill} \end{array}$

Janet/NNP will/MD back/VB the/DT bill/NN

Features in a CRF POS tagger

- Word shape features to handle unknown words
- Represent abstract letter pattern of the word
 - lower-case letters $\rightarrow x$
 - upper-case letters $\rightarrow X$
 - numbers \rightarrow d
 - retain punctuation
- Prefix and suffix features
- Example: well-dressed

```
prefix(x_i) = w

prefix(x_i) = we

suffix(x_i) = ed

suffix(x_i) = d

word-shape(x_i) = xxxx-xxxxxxx
```

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages

Summary

POS tagging in Morphologically Rich Languages

- Morphologically rich languages
 - large vocabulary \rightarrow data sparsity
 - more information contained
- POS tagger for morphologically rich languages need to label more information (e.g. case or gender)
- Tagsets for morphologically rich languages: sequences of morphological tags

 Yerdeki izin temizlenmesi gerek. The trace on the floor should be clear 	iz + Noun+A3sg+Pnon+Gen aned.
 Üzerinde parmak izin kalmiş. Your finger print is left on (it). 	iz + Noun+A3sg+P2sg+Nom
 Içeri girmek için izin alman gerekiye You need permission to enter. 	or. izin + Noun+A3sg+Pnon+Nom

• Results in large tag set \rightarrow combine with morphological analysis

Word Classes

- Part-of-Speech Tagging
- Named Entities and Named Entity Tagging
- HMM Part-of-Speech Tagging
- Conditional Random Fields (CRFs)
- POS tagging in Morphologically Rich Languages

Summary

- Languages generally have a small set of **closed class words** that are highly frequent, ambiguous, and act as function words, and **open-class** words like nouns, verbs and adjectives
- Part-of-speech tagging: the process of assigning a part-of-speech label to each of a sequence of words
- The probabilities in HMM taggers: estimated by maximum likelihood estimation on tag-labeled training corpora.
- The Viterbi algorithm is used for decoding, finding the most likely tag sequence
- CRF taggers: a log-linear model that can choose the best tag sequence given an observation sequence, based on a set of features