Concepts and Applications in NLP Morphology

Marion Di Marco

October 29, 2024

Basic Concepts

- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

- Morphology: studies the internal structure and composition of words
- Unübersetzbarkeit →

un_{Pref} über_{Part} setzen_{Verb} bar_{Suffix_ADJ} keit_{Suffix_N}

• untranslatability \rightarrow

un
Pref translate
Verb able
Suffix _ADJ ity
Suffix _N

• Many words can be segmented into individually meaningful parts

-	read	read-s	read-er	read-able
	wash	wash-es	wash-er	wash-able
	write	write-s	writ-er	writ-able
_	kind	kind-n	ess	un-kind
	happy	happi-	ness	un-happy
	friend-b	v friend-	-li-ness	un-friend-ly

- These meaningful parts are called morphemes
- Morphemes are the ultimate elements of morphological analysis; they are, so to speak, morphological atoms

What is a Word: Information Morphemes

- Morpheme: smallest meaningful constituent of a linguistic expression
- Example:

Camilla met an unfriendly chameleon.

- Possible segmentations:
 - syntactic segmentation:
 Camilla | met | an | unfriendly | chameleon.
 - syntactic and morphological segmentation:
 Camilla | met | an | un|friend|ly | chameleon.
- Impossible segmentation:
 - Camilla | met | an | un|friend|ly | *cha|meleon.

Neither *cha* or *meleon* are meaningful in isolation, nor do they share any aspect of meaning in other contexts, e.g. **cha*|*risma*

What is a Word? Morphemes

English

I am swim-m-ing

- We know the meaning of (to) swim
- -ing: this event is taking place at the time of the utteranc e
- Why the extra m?

• Turkish

Ben yüz-üyor-um I.Nom *swim*-Prog-1P.Sg

- yüz means 'swim'
- - üyor corresponds to English -ing
- -um indicates the person

 \Rightarrow Inflected Turkish verb contains more information

Morphological Relathionships

Lexemes and Word Forms

- A lexeme is a word in an abstract sense
 - the lexeme LIVE represents the core meaning shared by forms such as *live, lives, lived, living*
 - In most languages, dictionaries are organised according to lexemes ("dictionary word")
- A word-form is a word in a concrete sense
 - combination of a lexeme and a set of grammatical meanings
 - LIVE + "third person, singular, present tense" \rightarrow *lives*
 - Word-forms belonging to the same lexeme express different grammatical meanings, but the same core (semantic) concept
- Paradigm: the set of word-forms that belong to a lexeme

• Word family: A set of related lexemes

read, readable, unreadable, reader, readability, reread logic, logician, logical, illogical, illogicality

- Each member of a word family is given its own dictionary entry
 - complex lexemes: new concepts that are different from the concepts of the corresponding simple lexemes
 - (e.g. read denotes activity, reader denotes individual)
 - Complex lexemes: less predictable then word-forms
 (e.g. a specialist in *logic* is a *logician* rather than a *logicist*)
- Word family: different part-of-speech (*V*, *N*, *ADJ*) Paradigm: same part-of-speech

Basic Concepts

- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

Morphological Processes Inflection, Derivation and Compounding

• Inflection: the relationship between word-forms of a lexeme A lexeme is inflected for grammatical features,

the Latin lexeme insula inflects for case and number

• **Derivation**: the relationship between lexemes of a word family A lexeme can be derived from another lexeme,

the lexeme reader is derived from the lexeme read

• Compounding:

a word belongs to two or more word families simultaneously.

the lexeme *firewood* belongs both in the word families of *fire* and *wood*

Morphological Processes Subdivisions of Morphology

Morphological Building Blocks

Abstractness of meaning of morphemes

- Some meanings are very concrete and can be described easily: the meanings the morphemes *wash*, *logic*, *chameleon*, *un*-
- Other meanings are abstract and more difficult to describe:
 ity in *readabil-ity* → 'the quality of being readable'
- Some meanings are so abstract that they can hardy be called meanings
 → morphemes have certain grammatical functions
 - -s in reads: subject is 3rd person singular

Morphological Building Blocks Challenges

- Morphotactics/Morphosyntax
- Words are composed of smaller units (morphemes)
- When combining morphemes, certain rules/conditions need to be fulfilled

piti-less-ness *piti-ness-less

- Pholonogical/Orthographical Alternations
- The realization of a morpheme might vary depending on its context (→ allomorph: variation of a morpheme) pity → piti in pitilessness die → dy in dying swim → swimm in swimming

Morphological building blocks Affix and base

- Word-forms in an inflectional paradigm generally share (at least) one longer morpheme with a concrete meaning
- An affix attaches to a word (to its base). The affix usually has an abstract meaning and cannot occur by itself.
- Affixes can be characterised by their position within the word

Suffix	follows the base	English -ful in event-ful
Prefix	precedes the base	English <i>un-</i> in <i>un-happy</i>
Infix	occurs inside the base	Arabic -t- in <i>(i)š-t-aġala</i>
		'be occupied' (base: <i>šaġala</i>)
		Tagalog <i>-um-</i> in <i>s-um-ulat</i>
		'write' (base: <i>sulat</i>)
Circumfix	occurs on both sides	German get in ge-mach-t
	of the base	'made' (base: <i>mach</i>)

- Allomorph: Morphemes may have different shapes under different circumstances
- For example, the pronunciations of the English plural morpheme -s
 - [s] as in *cats* [kæts]
 [z] as in *dogs* [dɒgz]
 [əz] as in *faces* [feisəz]
- Allomorphs of one morpheme occur in different environments in **complementary distribution**. E.g. indefinite articles *a* and *an*:
 - an aardvark / *an bear
 - *a aardvark / a bear

- A morphophonological rule can manipulate underlying representation under certain conditions and yields a surface representation
- E.g. Russian: when the stem is followed by a vowel-initial suffix, the vowel *o/e* is often dropped if it is the last vowel in the stem

Morphophonological rule							
"o/e in the fi	"o/e in the final stem syllable disappears when						
the stem is for	ollowed by a vowel-initi	ial suffix"					
underlying:	[zamok] 'castle-SG'	underlying:	[zamok-i] 'castle-PL'				
application:	no	application:	yes ([zamok-i] → [zamk-i])				
surface:	[zamok] 'castle-SG'	surface:	[zamk-i] 'castle-PL'				

- Suppletion: the use of one word as the inflected form of another word
- Strong suppletion: allomorphs exhibit no similarity at all

go		wen-t	English	
good		bett-er		
ir	'go'	va-s	'you go'	Spanish

• Weak suppletion: allomorphs exhibit some similarity, but this cannot be described by phonological rules

buy	[bai]	bough-t	[bɔːt]
catch	[kæt∫]	caugh-t	[kɔːt]
teach	[tiːt∫]	taugh-t	[tɔːt]

• Note that it is often hard to distinguish between weak suppletive allomorphy and phonological allomorphy

Basic Concepts

- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

Morphological patterns Example: *Umlautung* in German

- Morphological structure can be more than combining affixes with bases
- German plural formation: add an *umlaut* to the vowel (the stem vowel changes, no morpheme is added)

singular	plural	
Mutter	Mütter	'mother(s)'
Vater	Väter	'father(s)'
Tochter	Töchter	'daughter(s)'
Garten	Gärten	ʻgarden(s)'
Nagel	Nägel	ʻnail(s)'

Morphological Patterns

Concatenative vs. Non-concatenative morphology

- Morphological pattern: processes in which morphological meaning can be associated with a segmentable part of the word and examples where this is not possible
- Basic types of morphological patterns:
 - concatenative morphology: two morphemes are ordered one after another i.e. affixation and compounding (segmentation)
 - non-concatenative morphology: everything else

Morphological Patterns

Affixation and compounding: Concatenative morphology

- An affixation rule also states which *types* of morphemes may combine: this is the **combinatory potential** of the affix
- We can't just combine any base and any affix. The **word-class** of the base in an important factor:
 - combinatory potential of un-
 - combinatory potential of -able
 - combinatory potential of comparative -er
 - combinatory potential of -ful
- Adjective examples:

un-intelligent, *intelligent-able, *intelligent-ful, however *intelligent-er (more intelligent) [_Adjective] [Verb_] [Adjective_] [Noun_]

Morphological Patterns

Base modification: Non-concatenative morphology

- Base modification (stem modification/alternation): The shape of the base is changed without adding segmentable material
- Morphological patterns may involve a changed manner of articulation
- Weakening of word-initial obstruent consonants, e.g. Scottish Gaelic indefinite nouns, genitive plural

nom sg indef	gen pl indef	
[b] bard	[v] bhàrd	'bard'
[k ^j] ceann	[ç] cheann	'head'
[g] guth	[ɣ] ghuth	'voice'
[t ^h] <i>tuagh</i>	[h] <i>thuagh</i>	'axe'
[b] balach	[v] bhalach	'boy'

• Many more types of base modification in other languages

Morphological Patterns Reduplication

• Reduplication of the entire stem,

e.g. weakening the meaning of an adjective in Malagasy

be	'big, numerous'	be-be	'fairly big, numerous'
fotsy	'white'	fotsi-fotsy	'whitish'
maimbo	'stinky'	maimbo-maimbo	'somewhat stinky'
hafa	'different'	hafa-hafa	'somewhat different'

• Colloquial English:

for example, emphasis on the prototypical meaning :

I'll make the tuna salad and you make the SALAD-salad.

Ghomeshi et al. (2004)

Outside the realm of morphology

Abbreviations and blends

- Other operations that can be used to create new words
- Abbreviations: acronyms: NATO (<u>North Atlantic Treaty</u>)
- Blends: smog (from <u>smoke</u> and <u>fog</u>), infotainment (from <u>info</u>rmation and enter<u>tainment</u>) influencer → fitfluencer, skinfluencer, momfluencer, ...
- Clippings (removal of a part of a word to form a new word):
 - final clipping: gas (gasoline), DE Auto (Automobil 'car')
 - initial clipping: chute (parachute),
 - medial clipping: ma'am (madam)
- ⇒ No morphological processes: the new words do not have different meanings (no systematic change in meaning)

- **Basic Concepts**
- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

- Inflection: the relationship between word-forms of a lexeme A lexeme is inflected for grammatical features, the Latin lexeme *insula* inflects for *case* and *number*
- **Derivation**: the relationship between lexemes of a word family A lexeme can be derived from another lexeme,

the lexeme reader is derived from the lexeme read

- Compounding:
 - a word belongs to two or more word families simultaneously.

the lexeme *firewood* belongs both in the word families of *fire* and *wood*

- Inflectional values are grouped together into super-categories called inflectional features
- Two values belong to the same feature if they share the same semantic (or fun ctional) property and are mutually exclusive
- E.g. *past*, *present* and *future* are inflectional values belonging to the inflectional feature *tense*, and they cannot occur together in the same verb (mutually exclusive)

Inflectional values on (pro)nouns, determiners, etc.:

- NUMBER: singular, plural, ...
 - indicates quantity
- GENDER: masculine, feminine, neuter, ...
 - can indicate natural gender
- PERSON: 1st, 2nd, 3rd
 - indicates person (speaker, addressee, third party)
- CASE: nominative, accusative, dative, ...
 - indicates semantic or syntactic role of a noun in a senctence
- DEFINITENESS: definite, indefinite, ...
 - indicates reference in discourse

Inflectional values

• Case and number on a noun in Latin (feminine, insula 'island')

NUMBER →	singular	plural
↓ CASE		
nominative	insul-a	insul-ae
accusative	insul-am	insul-ās
genitive	insul-ae	insul-ārum
dative	insul-ae	insul-īs
ablative	insul-ā	insul-īs

- Latin has 5 cases
- A few languages have more than 10 different cases: e.g. Finnish (15), Hungarian (18)
- Many languages have no cases at all: e.g. Vietnamese

Nouns

• Number, gender and case on a determiner in German (definite, 'the')

NUMBER \rightarrow	singular			plural		
GENDER → ↓ CASE	feminine	masculine	neuter	feminine	masculine	neuter
nominative	die	der	das	die	die	die
accusative	die	den	das	die	die	die
dative	der	dem	dem	den	den	den
genitive	der	des	des	der	der	der

Inflectional values Verbs

Inflectional values on verbs:

- TENSE: past, present, future, ...
 - exist to some extent in virtually all languages having inflection
 - indicates temporal location of the verb's action
- ASPECT: perfective (completed), imperfective (non-completed), habitual, ...
 - internal temporal constituency of an event
- MOOD: imperative (commands), indicative (event is an objective fact), subjunctive (non-realised event), ...
 - denotes conditionality, certainty, or desirability of an event
- VOICE: active, passive, ...
 - indicates association of semantic roles and syntactic functions
- NUMBER*: singular, plural, ...
- PERSON*: 1st, 2nd, 3rd

• Latin tense, aspect and mood forms (third person singular, *cantare* 'to sing')

MOOD →	indicative		subjunctive	
ASPECT \rightarrow	infectum perfectum		infectum	perfectum
↓ TENSE				
present	canta-t	canta-v-it	cant-e-t	canta-v-eri-t
past	canta-ba-t	canta-v-era-t	canta-re-t	canta-v-isse-t
future	canta-bi-t	canta-v-eri-t	-	-

...

Inflectional values on adjectives:

- DEGREE: positive (base form), comparative, superlative, ...
 - less widespread (confined to languages in Europe and South-West Asia)
- NUMBER*: singular, plural, ...
- CASE*: nominative, accusative, dative, ...

DEGREE →	positive	comparative	superlative
	big	bigg-er	bigg-est

Derivational meanings Overview and Examples

- Derivational meanings are more diverse than inflectional values
- Some meanings are cross-linguistically widespread
 - agent noun $(drink_V \rightarrow drink-er_N)$
 - quality noun (kind_A \rightarrow kind-ness_N)
 - facilitative adjective (read_V \rightarrow read-able_A)
- Some highly specific meanings only exist in a few languages
 - the French suffix -ier derives words for fruit trees
 from their fruit nouns (pomme 'apple' → pomm-ier 'apple tree')
- Derivational patterns change the word-class of the base lexeme
 - denominal: derived from a noun
 - deverbal: derived from a verb
 - deadjectival: derived from an adjective

Derivational meanings Examples

- Deverbal nouns $(V \rightarrow N)$
 - agent noun: English $drink \rightarrow drink$ -er
 - patient noun: English invite → invit-ee
- Denominal nouns $(N \rightarrow N)$
 - diminutive noun: Spanish gat-o ('cat') → gat-it-o ('little cat')
 - augmentative noun (expresses greater intensity):
 Russian borod-a ('beard') → borod-išča ('huge beard')
 - status noun: English child \rightarrow child-hood
 - inhabitant noun: Arabic *Mişr* ('Egypt') → *mişr-iyyu* ('Egyptian')
 - female noun: König ('king') → König-in ('queen')

Derivational meanings

- Deverbal verbs $(V \rightarrow V)$
 - applicative verb: German *laden* ('load') \rightarrow *be-laden* ('load onto')
 - repetitive verb: English write \rightarrow re-write
 - desiderative verb:
 Greenlandic sini- ('sleep') → sini-kkuma- ('want to sleep')
- Denominal verbs $(N \rightarrow V)$
 - 'put into N': English $bottle_N \rightarrow bottle_V$ ('to bottle')
 - 'cover with N': Russian sol' ('salt') \rightarrow sol-it' ('to salt')
- Deadjectival verbs $(A \rightarrow V)$
 - factitive: Russian čern-yj ('black') → čern-it' ('to make black')
Properties of inflection and derivation

Relevance to syntax

- Inflection is relevant to the syntax; derivation is not
- "Relevant to the syntax": grammatical function or meaning expressed by a morphological pattern is involved in eit her:
 - Syntactic government
 - Syntactic agreement

Properties of inflection and derivation Syntactic government

Syntactic Government:

- One word requires another word or phrase to have a particular value
- E.g. negated verbs in Polish often require a direct object in the genitive case (Case is inflectional in Polish):

Tomek(nie)czytałTomek.M.NOM.SG(not)read.3.SG.M.PST'Tomek was (not) reading a newspaper.'

gazet-e/(-y)
newspaper-ACC.SG/(GEN.SG)

Properties of inflection and derivation Syntactic agreement

Syntactic Agreement:

- Syntactic relation where the inflectional value of one word or phrase (target) must be the same as the inflectional value of another word or phrase (controller).
- E.g. Subject-verb agreement in English: verb (target) agrees with subject NP (controller) in number (*the boy walk-s, the girls walk*)

- **Basic Concepts**
- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

Morphological Typology

Morphology across Languages

- Linguistic concepts are realized differently across languages
- Analytic languages
 - low ratio of morphemes to words
 - syntactic information is mainly expressed by means of function words (e.g., prepositions, modifiers)
 - syntactic functions (subject, object) are assigned via word order
 - for example English, Norwegian, Danish
- Isolating Languages
 - each morpheme is also a word and vice versa
 - for example, Chinese and Vietnamese
 - Mandarin Chinese: 一天, yì tiān "one day", 三天, sān tiān "three day".
 no inflection for number in English: one day, three days

Morphological Typology

Morphology across Languages

• Synthetic languages

- grammatical information is synthesized into one word by means of (inflectional) morphology (e.g. grammatical case instead of prepositions)
- relatively free word order
- For example Slavic languages, German, Finnish, Turkish

• Agglutinative languages

- combine one or more morphemes into one word
- each morpheme is individually identifiable as a meaningful unit

• Fusional languages

- morpheme combinations do not remain distinct and fuse together
- one morpheme to denote numerous grammatical or syntactic features

 $III ustration \ from \ https://opentextbc.ca/psyclanguage/chapter/morphology-of-different-languages/$

Morphological Typology

Morphology across Languages

Illustration from https://opentextbc.ca/psyclanguage/chapter/morphology-of-different-languages/

Morphological Complexity

Example: Czech Nominal Inflection

• Inflection paradigm for the Czech adjective mladý (young)

		Masculine animate	Masculine inanimate	Feminine	Neuter	
Sg.	Nominative	mlad ý		mlad á	mlad é	
	Genitive	mlad ého		mladé	mlad ého	
	Dative	mlad ému		mladé	mlad ému	
	Accusative	mlad ého	mladý	mlad ou	mlad é	
	Vocative	mlad ý !		mlad á !	mlad é !	
	Locative	mlad ém		mladé	mlad ém	
	Instrumental	mlad ým		mlad ou	mlad ým	
PI.	Nominative	mladí	nladí mlad é		mlad á	
	Genitive	mlad ých				
	Dative	mlad ým				
	Accusative		mladé		mlad á	
	Vocative	mladí!	mla	dé!	mlad á !	
	Locative	mlad ých				
	Instrumental	mlad ými				

Figure from https://en.wikipedia.org/wiki/Czech_declension

Morphological Complexity

Example: Agglutinative Languages

Turkish	English	
duy(-mak)	(to) sense	
duygu	sensation	
duygusal	sensitive	
duygusallaş(-mak)	(to) become sensitive	
duygusallaştırıl(-mak)	(to) be made sensitive	
duygusallaştırılmış	the one who has been made sensitive	
duygusallaştırılamamış	the one who could not have been made sensitive	
duygusallaştırılamamışlardan	from the ones who could not have been made sensitive	

Figure from Ataman et al. (2017)

- **Basic Concepts**
- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

Morphological Complexity Vocabulary and Complex Word Forms

- Large vocabulary \rightarrow data sparsity
 - $\rightarrow\,$ some forms only occur infrequently or even not at all
- Generally challenging for NLP applications
- Interpretation of a seen form:
 - $\rightarrow\,$ what does the particular realization of a word mean?
- Generation of an appropriate form:
 → what should a form look like in the given context?
- More training data?
 - $\rightarrow\,$ more data certainly helps ... but cannot contain all potential forms
- Process morphologically complex forms \rightarrow segmentation and analysis

Strategies to Handle Large Vocabulary Simplifying Complex Word Forms

- Lemmatization: reduce inflected forms to lemma
- Stemming: reducing inflectional and derivational variants to stem connection, connected, connecting → connect
- Compound splitting:

drückt der Fußgänger den Ampelknopf, testet der Radarsensor die Verkehrslage when the pedestrian presses the traffic light button, the radar sensor tests the traffic situation.

split unknown words into known pieces: Ampelknopf \rightarrow Ampel+Knopf

- Subword segmentation: vocabulary reduction in LMs and MT
- Morphological segmentation and analysis
 - statistical segmentation
 - finite-state based

Subword Segmentation Vocabulary in Large Language Models

- Language models are trained on huge amounts of data, often on multilingual training data
- No explicit linguistic information!
- Vocabulary needs to be capped for practical reasons
 → typically segmentation into sub-word units
- Example from ChatGPT:

Many words map to one token, but some don't: indivisible.

The Nile crocodile (Crocodylus niloticus) is a large crocodilian native to freshwater habitats in Africa. It is widely distributed in sub -Saharan Africa.

Das Nilk<mark>rokodil ist das größte Krokodil</mark> Afrikas und erreicht normaler weise Längen von 3 bis 4 m.

Morphological Complexity

Vocabulary and Complex Forms

• Subword units are often based on WordPiece or BPE

Sennrich et al. (2016)

- \rightarrow handle unknown words
- \rightarrow efficiency
- Frequency-based compression algorithms:
 - start with small vocabulary (character-level)
 - iteratively merge the most common tuples until desired vocabulary size is reached
 - keep frequent words intact, segment less frequent ones
- Example: playing \rightarrow play ##ing
- Is this always a good idea?
- What about languages with more complex morphology?

Morphological Complexity

Vocabulary and Sub-word Units

- Segmentation based on BPE or WordPiece is not linguistically guided
- Resulting sub-words are not always meaningful linguistic units
- mitternacht|s|blau(e|en|s)
 the/a midnight blue car(s)

das m<mark>ittern</mark>achtsblaue Auto. die mitternachts</mark>blauen Autos.

ein mittern<mark>achtsbla</mark>ues Auto.

- Generalization issues:
 - the inflected word part blau (blue) is represented differently
 - the split does not adhere to morpheme boundaries/inflectional suffix
- Non-concatenative morphological processes cannot be captured
 - for example Umlautung: $Apfel_{Sg} \rightarrow \ddot{A}pfel_{Pl} (apple(s))$

Morphological Complexity Vocabulary and Sub-word Units

- English is an analytic language without rich morphology; segmentation with WordPiece or BPE functions reasonably well
- Frequency-based segmentation is not optimal for morphologically rich languages (e.g. Arabic, Hebrew, Finnish, Turkish, ...) Klein and Tsarfaty (2020)
- Studies for several languages: linguistically-guided segmentation in combination with frequency-based segmentation is better
 - Language modeling, machine translation

- **Basic Concepts**
- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

Implementation Approaches for Computational Morphology Listing all Word Forms

• Can we list all word forms and their features in a database?

harass	harass V INF		
harassed	harass V PAST		
harassed	harass V PPA	ART WK	
harasser	harasser	N 3sg	
harasser's	harasser	N 3sg GEN	
harassers	harasser	N 3pl	
harassers'	harasser	N 3pl GEN	
harasses	harass V 3sg	PRĖS	
harassing	harass V PRO	CG	
harassingly	harassingly	Adv	
harassment	harassment	N 3sg	
harassment's	harassment	N 3sg GEN	
harassments	harassment	N 3pl	
harassments'	harassment	N 3pl GEN	
harbinger	harbinger	N 3sg	
harbinger	harbinger	V INĚ	
harbinger's	harbinger	N 3sg GEN	
A.50.76			

- Feasible if the word list is "small"
- Creation is time-consuming
- Not feasible for "infinite" vocabulary (e.g. Turkish, ...)

Finite State Morphology

Overview

- Finite state systems are mathematically well understood, elegant and flexible
- Finite state systems are computationally efficient (fast and little memory usage)
- Finite state systems provide compact representations
- Morphological processes can be encoded as finite state networks
 - $\rightarrow\,$ lexicon of morphemes
 - $\rightarrow\,$ rules determining the form of each morpheme can be implemented
 - $\rightarrow\,$ valid combination of morphemes (morphotactics) can be modelled as a finite-state network

Finite State Morphology

• Finite state systems are inherently bidirectional

We picture Finite State Acceptors (FSA) with state graphs

Finite State Morphology

Finite state acceptors

- Alphabet: set of valid symbols
- Words: sequence of accepted symbols
- Language: set of accepted words
- The description of a finite state acceptor is finite
 - Finite number of states
 - Finite number of alphabet symbols
 - Finite number of transitions
 - \Rightarrow Number of accepted strings can be infinite

Finite State Morphology Example: small finite-state acceptor

- Network accepts the single word "elephant" alphabet (set of valid symbols): e,l,p,h,a,n,t
- When entering the input sequence e,l,e,p,h,a,n,t, the machine transitions through a series of states until the final state and the input word will be accepted
- No other words (e.g. "elephants" or "ant") are accepted by this network

Finite State Morphology Example: small finite-state network

• Network for the forms "cat", "cats", "car", "cars"

Finite State Morphology

Example: optimized representation

• States and transitions can be shared

Finite State Morphology Example: shared states

• Which word forms are recognized by this network?

• "clear", "ear", "clever", "ever"

Finite State Transducers

- A finite-state acceptor can only output two responses: accept or reject (→ useful for e.g. spell checking)
- Return more interesting information with a finite state transducer
- "Mapping" between upper language and lower language
- Analysis process of a finite state transducer
 - Start at the start state/beginning of the input string
 - Match the input symbols against the lower-side symbols on the arcs, consume all input symbols and find a path to a final state
 - If successful: return the string of upper-side symbols on the path as result
 - If not successful: return nothing

Finite State Transducers

- input: *clear*, output: *clear*
- input: *clever*, output: *clever*, ...
- Alphabet of pairs of symbols u:l (upper and lower)
- Generally, u or I can be empty (ϵ)
- An acceptor can be viewed as an identity transducer

Finite State Transducers Example 2

OUTPUT: m a l e n +Verb +Pres +1P +Sg

Finite State Transducers

Generation

- Word forms can be generated with the same transducer when applying it backwards
 - \rightarrow generation is the inverse of analysis
- To generate the 3rd Person Singular of *malen* in present tense: use the input string "malen +Verb +Pres +3P +Sg"
 - Match the input symbols with the upper-side symbols on the arcs, consume all symbols an find a path to the final state
 - If successful: return the string of the lower-side on the path as a result
 - If not successful: return nothing

SMOR: Example

analyze> Ampelknopf Ampel<NN>Knopf<+NN><Masc><Acc><Sg> Ampel<NN>Knopf<+NN><Masc><Dat><Sg> Ampel<NN>Knopf<+NN><Masc><Nom><Sg>

analyze> grünen arün<+ADJ><Pos><Neut><Gen><Sa><Wk> grün<+ADJ><Pos><Masc><Acc><Sg><Wk> grün<+ADJ><Pos><Masc><Acc><Sg><St> grün<+ADJ><Pos><Masc><Gen><Sg><St> grün<+ADJ><Pos><NoGend><Acc><Pl><Wk> orün<+ADJ><Pos><NoGend><Dat><Pl><Wk> grün<+ADJ><Pos><NoGend><Dat><Pl><St> arün<+ADJ><Pos><NoGend><Dat><Sa><Wk> grün<+ADJ><Pos><NoGend><Gen<u>><Pl><Wk></u> grün<+ADJ><Pos><NoGend><Nom><Pl><Wk> grün<+ADJ><Pos><Fem><Gen><Sg><Wk> grünen<+V><3><Pl><Pres><Ind> arünen<+V><1><Pl><Pres><Subi> grünen<+V><1><Pl><Pres><Ind> grünen<+V><Inf>

Schmid et al. (2005)

- The foma compiler: tool for converting regular expressions to finite automata and transducers
- https://github.com/mhulden/foma/blob/master/foma/docs/ simpleintro.md
- Tutorial: https://fomafst.github.io/morphtut.html

FOMA Example

```
Multichar_Symbols +N +V +PastPart +Past +PresPart +3P +Sg +Pl
LEXICON Root
Noun :
Verb :
LEXICON Noun
cat Ninf:
dog Ninf;
LEXICON Verb
paint Vinf;
watch Vinf;
LEXICON Ninf
+N+Sa:0 #:
+N+Pl:^s #;
LEXICON Vinf
+V:0
                #:
+V+3P+Sa:^s
                #:
+V+Past:^ed
                #;
+V+PastPart:^ed #:
+V+PresPart:^ing #;
```

FOMA Example

```
foma[0]: read lexc simple-english.lexc
Root...2, Noun...2, Verb...2, Ninf...2, Vinf...5
Building lexicon...
1.2 kB. 22 states, 29 arcs, 14 paths.
foma[1]: define Lexicon;
defined Lexicon: 1.2 kB. 22 states, 29 arcs, 14 paths.
foma[0]: regex Lexicon:
1.2 kB. 22 states, 29 arcs, 14 paths.
cat+N+Sq
watch+V+PresPart
                        watch^ing
watch+V+PastPart
                        watch^ed
watch+V+Past
watch+V+3P+Sq
watch+V watch
paint+V+PresPart
paint+V+PastPart
                        paint^ed
paint+V+Past
                paint^ed
paint+V+3P+Sq
paint+V paint
dog+N+Pl
                dog^s
doa+N+Sa
```

foma[1]: down apply down> watch+V+PastPart watch^ed
foma[1]: up apply up> cat cat+N+Sg
apply up> elephant ???

- How well does this model English Plural?
- What happens if we add the noun *city*?

• Construct a set of ordered rule transducers that modify the intermediate forms output by the lexicon component

Model city - cities: replace y in plural context
 define YReplacement y -> i e || _ "^" s ;

- Last step: remove the ^-symbol which is used to separate morpheme boundaries
- Connect lexicon and rules
```
### simple-english.foma ###
# Y replacement: -y changes to -ie before -s
define YReplacement y -> i e || _ "^" s ;
# Cleanup: remove morpheme boundaries
define Cleanup "^" -> 0:
read lexc simple-english.lexc
define Lexicon:
define Grammar Lexicon .o.
      YReplacement .o.
      Cleanup;
regex Grammar:
```

- (1) Go through the Foma tutorial
- (2) Solve the tasks in the assignment (to be uploaded)

- **Basic Concepts**
- Morphological Building Blocks
- Morphological Patterns and Rules
- Inflection and Derivation
- Morphological Complexity
- Challenges in NLP
- Modeling Morphology: Finite State Morphology
- **References and Credits**

- Some slides adapted from Weller and Haselbach (IMS Stuttgart) and Guillou and Fraser (LMU München)
- Content from UnderstandingMorphology [2nd ed.], Haspelmath, M. & Sims, A. D. (2010): chapter 2 'Basic concepts' chapter 3 'Rules' chapter 5 'Inflection and Derivation'
- Content from *Finite State Morphology*, Kenneth R. Beesley, Lauri Karttunen (2003)

References

- Helmut Schmid, Arne Fitschen and Ulrich Heid, (2004) SMOR: A German Computational Morphology Covering Derivation, Composition, and Inflection Proceedings of the IVth International Conference on Language Resources and Evaluation (LREC 2004)
- Duygu Atamanab, Matteo Negrib, Marco Turchib, Marcello Federico. (2017) Linguistically Motivated Vocabulary Reduction for Neural Machine Translation from Turkish to English. The Prague Bulletin of Mathematical Linguistics No. 108, 2017, pp. 331-342. doi: 10.1515/pralin-2017-0031
- Rico Sennrich, Barry Haddow, Alexandra Birch, (2016) Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.