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Words as Vectors




Distributional Hypothesis

e Humans infer meaning from the context McDonald & Ramscar (2001)

e What is a wampimuk?

“He filled the wampimuk, passed it around and we all drunk some.”

A container for drinks?

“We found a little, hairy wampimuk sleeping behind the tree.”

A little animal?




Distributional Hypothesis

e What other words could occur in this context?

“He filled the ___, passed it around and we all drunk some.”

- cup
— goblet
— bottle

“We found a little, hairy ___ sleeping behind the tree.”

— monkey
— squirrel
— rabbit




Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings

Firth (1957):
“You shall know a word by the company it keeps.”

Vectors as word representations to describe the properties of each word

Distributional statistics: core part of language technology
leverage large amounts of unlabeled data to learn about (rare) words




Constructing a Distributional Semantic Model

understand the causes of these climate anomalies is important not only for historical
information on how Earth 's climate has changed over thousands and thousands of

oceans are also threatened by climate change , with temperature rises of

e Context: words next to w in a fixed-size window

e Use contexts of all observations of w to build a representation of w

causes
anomalies
important
e Collecting context words of w (content words only): | Earth
changed
threatened
change

[ = T = W =G




Context Design

e Size of the context window
e Differentiate: left-side context and right-side context

e All words in a windos vs. selected words in a window,
lemma vs. inflected forms

e POS-coded: changenoun vs. changeyers
e Structured information: dependency information

(e.g. SUBJ, OBJ, PP relations)

— dependency-filtered: consider only particular relations
postman: bite, dog: bite

— dependency-linked: also keep information of the depency path
postman: obj-of-bite, dog: subj-of-bite

= Task-specific




Words as Vectors: Word Dimensions and Similarity

aardvark .. computer data result  pie  sugar

cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19

digital (o 1670 1683 85 5 1)
information 0 3325 3082 378 3 3

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

information
[3982,3325]

computer

1000 2000 3000 4000
data

A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words dara and computer.

Figures from Jurafsky and Martin
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Cosine to Measure Similarity

e Measure similarity between vectors of the words v and w

e Common similarity measure: cosine of the angle between the vectors

N
E Viwi
i=1

cosine(v,w) = — — = ‘ (6.10)

e Values range from 1 (= same direction) to 0 (for orthogonal vectors)

-1 for opposite directions, but we don't get this with non-negative frequencies

Figure from Jurafsky and Martin
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Cosine to Measure Similarity

pie data computer
cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

442 %548 %3982 + 23325

Va4 1 82+ 2252 1 39822 1 33252
S5+ 1683 %3982+ 1670%3325

V5216832 + 16702y/52 + 39822 + 33252

cos(cherry, information) =

cos(digital, information) =

= information is closer to digital than to cherry

Figure from Jurafsky and Martin




Cosine to Measure Similarity
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Dimension 2: ‘computer’

A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. The figure doesn’t show the cosine, but it highlights the
angles; note that the angle between digiral and information is smaller than the angle between
cherry and information. When two vectors are more similar, the cosine is larger but the angle
is smaller; the cosine has its maximum (1) when the angle between two vectors is smallest
(0°); the cosine of all other angles is less than 1.

Figure from Jurafsky and Martin
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Context Weighting

e Raw context counts — scores taking into account the relevance of an
observed context

e Association measures: higher weight to context words highly
associated with target word

e Co-occurrence with a frequent context element is less informative:
the less frequent a context element is — the higher the weight should
be for the observed co-occurrence

e Different measures, for example point-wise mutual information




Point-wise Mutual Information

e Intuition: how much more do two words occur in a corpus than we
would expect at chance?

P(w,
PMI(w:c) = log, ()

7(11’)F(C] (6.17)

e Numerator: how often we observed the word and the context together

e Denominator: how often we expect the two words to co-occur
Probability of two independent events both occurring: product of the
probabilities of the events

e Ratio: estimate of how much more the two words co-occur than we
expect by chance

Figure from Jurafsky and Martin
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Point-wise Mutual Information

e PMI scores lie between —co and +oo

e Negative PMI means that words are co-occurring less than we expect
by chance

e Negative PMI values tend to be unreliable unless the corpora are
enormous

Unclear whether scores of “unrelatedness” are meaningful

e Positive point-wise mutual information: replace negative values with 0

P(w,c)

PPMI(w,c¢) = max(log, PP ,0) (6.18)

Figure from Jurafsky and Martin
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Point-wise Mutual Information: Example

computer data result pie sugar count(w)
cherry 7 8 9 442 25 486
strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447
information 3325 3982 378 5 13 7703
count(context) 4997 5673 473 512 61 11716

TS Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other word-
s/contexts matter.

Thus for example we could compute PPMI(information,data), assuming we pre-
tended that Fig. 6.6 encompassed all the relevant word contexts/dimensions, as fol-

lows:
. . 3982
P(w=information, c=data) = 11716 =.3399
7703
=i i = —=. 5
P(w=information) 1716 657
5673
P(c=data) = 6 = 4842

PPMI(information,data) = log,(.3399/(.6575 % .4842)) = .0944

Figure from Jurafsky and Martin
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Point-wise Mutual Information: Example

p(w,context) p(w)
computer data result pie sugar p(w)
cherry 0.0002 0.0007  0.0008  0.0377  0.0021 0.0415
strawberry 0.0000 0.0000  0.0001 0.0051 0.0016 0.0068
digital 0.1425 0.1436  0.0073  0.0004  0.0003 0.2942
information 0.2838 03399  0.0323  0.0004  0.0011 0.6575
p(context) 0.4265 04842  0.0404 0.0437  0.0052

[T NNl Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
in the right column and the bottom row.

computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
anegative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

Figure from Jurafsky and Martin
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Point-wise Mutual Information: Rare Words

e PMI has the problem of being biased toward infrequent events
very rare words tend to have very high PMI values

¢ Reduce bias toward low frequency: change the computation for P(c)

e Function P,(c): raise the probability of ¢ to the power of «

Pw,c)

PPMIy (w,c) = max(log, W,O) (6.21)
_ count(c)*
Fale) = 3, count (¢)® ©6.22)

e In practice: o =0.75 leads to good results

Figure from Jurafsky and Martin
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Word2Vec

e What we want: put information about contexts into vectors

count-based methods: long, sparse vectors; dimensions corresponding to |V/|

e Word2Vec: Learn vectors by teaching them to predict contexts
Mikolov et al. 2013(a); Mikolov et al. 2013(b)

e Word2Vec's parameters are word vectors that are optimized for a
certain objective

e Objective: make vectors “know” about the context of it word
train vectors to predict possible contexts

e Hypothesis: “know"” about context — “know"” about meaning

20



Word2Vec: ldea

P(We_a|we) PWe_1|we) P(Weyp1|we) P(Weya|we)

NS N

I saw a cute grey cat playing in the garden

Wiz We1 Wi Wipr Wiy

central context
word ds

e Main idea
— all words in the vocabulary V are represented by a vector
— go over corpus with a sliding window: one central word and context
words to the left and right
— calculate the probability of a context word given the center word
using the similarity of word the vectors
— adjust vectors to maximize the probabilities

https://lena-voita.github.io/nlp_course /word_embeddings.htm|#w2v_idea
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Objective Function: Negative Log-Likelihood

e For each position t =1,..., T, predict context words in a fixed-size

window of size m given the central word w;:
T
Likelihood = L(§) =1_[ l_l P(Werj | we: 6)

8 is all variables t=1 -msjsm
to be optimized j#0

e The objective function is the average negative log-likelihood

sometimes called a cost or /oss function |

The objective function J () is the (average) negative log likelihood:
T

1 1
J(@) = —?logL(B) = _FZ Z logP(WH_j | we; 6)
t=1-ms<jsm
j#0
Minimizing objective function < Maximizing predictive accuracy

Figures from web.stanford.edu/class/cs224n /slides/cs224n-spr2024-lecture01-wordvecsl.pdf
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Calculate the Probabilities

e How to calculate P(wq.jlw:,0) 7
e For each word w we have two vectors
— v, when it is a central word
— u, when it is a context word
e Softmax to map arbitrary values x; to a probability distribution p;
softmax(x,-) = ,,EXPA max: the largest x; will have the largest probability p;
Y exp(x;) soft: all probabilities are non-zero
Jj=i
dot product: measure similarity of o and c
o P(O|C) _ exp(ug—vc) larger dot product = larger probability
=00
Lwev exp(u,ve) normalize over vocabulary to get probability distribution

where and ¢ = central word and o = outside word

23



Word2Vec: Word and Context Vectors

aardvark g9 1 \
apricot [ees]

r W target words

0 _ zebra [@89) |V| )
aardvark [ees) |V| I\

apricot [ew

r C  context & noise
words

zebra (558 2V J

JYPIITYBR] The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter € that
the algorithm learns is thus a matrix of 2|V| vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Figure from Jurafsky and Martin

24



Train: Gradient Descent, one Word at a Time

Parameters 6: vectors v, and u,, for all words in |V/|
Optimize training objective via gradient descent (with learning rate «)
gnew — eold _ OéVgJ(Q)

Make updates one at a time: each update is for a single pair of center
word and a context word

Loss function

T T
J(0) = —+loglL(0) = —%§ Y logP(we.jlwe, 0) = + zl > Jej(0)
—m<j<m t=1 —-m<y<m

j#0 Jj#0

For the center word ws, the loss contains a distinct term
Jrj(0) = —logP(wy.j|we,8) for each of its context words wy.

25



Example: Gradient Update, one Word at a Time

. I saw a cute grey cat playing in the garden ..

e Loss for the central word cat and the context word cute:
TR
€XP UtyteUcat i T
Jt j(0) = —log P(cute|cat) = —log ———— = —u_,, V. + log eXP U, Viat-
J > expulv,., w;;m '

weVoc

e Parameters at this step:

— vectors for central words: only wgye
— vectors context words: all u,,

= These parameters will be updated

Figure by Lena Voita - NLP Course for You

26



Example: Gradient Update

1. Take dot product of v, with all 2.exp 3.sumall
U-Zm Veat — eXp(uL Veat)
/ WhsVear ——  exp(ulsvear)
: D el v
ya (aron] — epCtuevcar— 2
cat [ : @ @
uanvmz —_— eXP(ufvanz)
v u
4. get loss (for this one step) 5. evaluate the gradient,
make an update
. N - 9]:,;(6)
Je,j(0) = —ulyioveq +log Z exp(ity Veqr) Veat = VYear — EE
| I

wev

L —

dJ.;(6
@ @ uW:=uW—aL()VWEV
au,,

Figure by Lena Voita - NLP Course for You
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Example: Gradient Update

e Making an update to minimize J; ()
— increase the similarity (i.e. dot product) of vear and ucyte
— decrease the similarity between v,; and u,, for all other words w

.,

Uy Veat
_ u decrease

/ w3 Veat
At increase

cat | ¥ .

N\ , decrease

“H'H l"('”f

v u

e Why decrease similarity between v,; and all other words?
some of them might be valid contexts as well
e Updates for all context words for all target words
— averaged over all updates, the vectors will learn the distribution

Figure by Lena Voita - NLP Course for You
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Faster Training: Negative Sampling

e For each pair of central word and its context word: update all vectors

for context words

e Highly inefficient: each step is proportional to the vocabulary size

e Don't consider all context vectors in V, but randomly sample just a

few negative examples

. lemon, a [tablespoon of apricot jam,

cl c2

positive examples +
w Cpos

apricot tablespoon
apricot of

apricot jam
apricot a

W

c3

al] pinch ...

c4

negative examples -

w

Cneg

w

Cneg

apricot
apricot
apricot
apricot

aardvark apricot

my
where
coaxial

apricot
apricot
apricot

seven
forever
dear

if

e Word2Vec uses more negative than positive examples

Figure from Jurafsky and Martin
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Faster Training: Negative Sampling

Dot product of v,,,: Dot product of v,
+ with . -increase, — with .. - iNcrease,
+ with all other u - decrease + with a subset of other 1 - decrease

Negative samples: randomly
. selected K words

Wiy P l decrease

Parameters to be updated: Parameters to be updated:
Veat * Vear
* uy forallwin V| + 1 vectors * Ugype and u,, forw K+ 2 vectors
the vocabulary in K negative examples

e Increase similarity between uc,y and ucyre
e Decrease similarity between uc,; and subset of k negative examples

e Large corpus: on average, all updates will update each vector sufficient
number of times




Faster Training: Negative Sampling

The new loss function:

Jij(0) = —log a(ulycveat) — Z logo(—ulv..)

we{w;,. - Wi}

® wi,...,w, are the k negative examples

Sigmoid function to map the dot product into a probability:

o(x) = ﬁ Note: o(-x) =1-0(x)

Write the loss also as

J;j(6) = —loga(ul,; veu) — Z log(1 — o(ulv..0)).

we{wiy,. .. Wiy}

Figure by Lena Voita - NLP Course for You

|
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Word2Vec: Word and Context Vectors

aardvark

move apricot and jam closer,
apricot =~ _increasingc . - w
N ~
w N
\
Lo “...apricot jam...”
zebra [@ee VS
7] dvark LA
aardvar 70 *, move apricot and matrix apart
Y N decreasing Cpegt * W

- “move apricot and Tolstoy apart

decreasing C,.,, * W

Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricer) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

Figure from Jurafsky and Martin
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Choice of Negative Examples

e Each word has only few “true” contexts: randomly chosen words are
likely “negative” (= not true) contexts

e Noise words are chosen according to their empirical distribution
e Modified to sample less frequent words more often:

weighted unigram frequency p,(w)

sample the with probability p, (the)
sample aardvark with probability p,(aardvark)

count(w)®

e In practice, set « =0.75 and use P,(w) = S count(w)E

e We did the same for PPI

33



Word2Vec: Variants

e Skip-Gram: predicts context words given the central word.
Skip-Gram with negative sampling is the most popular approach

e CBOW (Continuous Bag-of-Words): predicts the central word from
the sum of context vectors (= bag of words)

. I saw a cute grey cat playing in the garden ..

caf cute grey playing in
cute grcy pla&ing in “cat-
i L s— sum
] cute cute [
cat K ) E—
= %o piaying [
v u u v
Skip-Gram: from central predict context CBOW: from sum of context predict central
(one at a time)

Figure by Lena Voita - NLP Course for You
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Outline

Other Kinds of Static Embeddings
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Fasttext

Word2Vec: no good way to handle unknown words and sparsity

— unknown: occurs in test data, but unseen in training data
— sparsity (for example in morphologically rich languages): some word
forms only rarely seen in training data — unreliable representation

e Fasttext Bojanowski et al. (2017)
e Enriches word vectors with subword information

e Subword models: represent each word as itself and a bag of
constituent n-grams

e For example word with n=3: <word> and <wo, wor, ord, rd>

e Learn a skipgram embedding for each constituent n-gram

e Unknown words: represented by the sum of the constituent n-grams

36



GloVe

GloVe: Gobal Vectors Pennington et al. (2014)

Based on global corpus statistics: count-based methods to measure
association between word w and context ¢

GloVe controls the influence of rare and frequent words

Loss function is designed such that

— rare events are penalized
— very frequent events are not over-weighted

37



Outline

Semantic Properties of Embeddings
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Visualizing Embeddings

e Visualizing embeddings is important in order to understand and apply
such models

e Simplest way to visualize the meaning of a word: list the most similar
words according to cosine similarity

2.toaa

z_litoria

4. leptedactylidae

5.rana

6. lizard -3

4. leptodactylidae 5. rana

7. eleutherodactylus 3. litoria 7. eleutherodactylus

e Sometimes, the nearest neighbors according to this metric reveal rare
but relevant words that lie outside an average human's vocabulary

Figure from https://nlp.stanford.edu/projects/glove/
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Visualizing Embeddings

e Clustering: show a hierarchical representation of which words are
similar to others

e Probably most common method: project d dimensions of a word to
two dimensions, for example by means of t-SNE (t-Distributed
Stochastic Neighbor Embedding)

@AG @V EP) OVb@rs) ‘OF @Wb@s) @Cr @Vb OM ONa

T-SNE visualisation of word embeddings generated using 19th century literature

Figure by Siobhan Grayson, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64541584
https://en.wikipedia.org/wiki/ T-distributed_stochastic_neighbor_embedding
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Types of Similarity or Association

e Size of context window: generally between 1 and 10 words on each
side of the target word

e Shorter context windows: capture functional and syntactic similarities

information comes from nearby words — most similar words tend to be
semantically similar with the same part-of-speech: Poodle, Pitbull, Rottweiler

e Longer context window: topically related words: dog, bark, leash

41



Analogy/Relational Similarity

e Models like word2vec or GloVe can solve analogy problems

P G —— —
king — man + woman is vector close to queen

. . a—
Paris — France + Italy is vector close to Rome

The embedding model thus seems to be extracting representations of
relations like male — female, or capital — city-of, or even comparative —
superlative

e But ... it doesn't always work

— just returning morpological variants:
—_— s 5 [ —_—
cherry — red + potato returns potatoes instead of brown

— embedding spaces perform well if the task involves frequent words,
small distances, and certain relations (relating countries/capitals or

verbs/nouns with inflected forms), but not so well for other relations

42



Analogy/Relational Similarity

morphology (Pennington et al., 2014).

05 T
0s heiross - owest
' 04 T
04] ' U
e |  Siower o~ —eshoriest
os e ; ool 0 L
§.s\a)l i o - slows "
/ .
02 [ ! ;I ;empress short”
h 1 ! ot 02
01 ‘\ 1 ” +madam o
h [l I 1 I
| ar Ly
o | A eptiow h S o1
! woman ! ot
| i , loart!
-1 | unde / s o
4 brother ! ! 1/ duke 0 , 7 stronger T ~ = strongest
0.2 1 1 1 /’ . Touder
. - ouder T,
! / [p— svong o foucest
03 o1 owd
; K ! s oarer - - -~ cearest
4 ! ' 2~ soffer” ~ -
04 | / 27 ~ - softest
I 4sir 1 -0.2
05 Iman Iing 7 = darkest
-0.3
D5 04 03 02 1 0 o1 02z 05 04 05 T4 s 02 w01 0 o1 o0z 03 o0 05 o8
(a) (b)
Relational properties of the GloVe vector space, shown by projecting vectors onto two dimen-

Figure 6.16
sions. (a) king — man + woman is close to queen. (b) offsets seem to capture comparative and superlative

Figure from Jurafsky and Martin
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Embeddings and Historical Semantics

flaunting
tasteful

gays

gay (1990s)
lesbian

A daft 9ay (1900s)

sweet
cheerful

pleasant

frolicson\e
witty Y gay (1950s)

bright

isexual

homosexual

B spread
SoOwW
broadcast (18505)59;(1
SOWS
circulated scatter

broadcast (1900s)
newspapers
television

radio
i broadcast (1990s)

appalliwg terrible
awful (1900s)

solemn
awful (1850s)
HWE\J(?SUC
awe
dread énenswve
gloomy

horrible

wonderful
awful (1990s)
awfulye’rd

IS WW) A t-SNE visualization of the semantic change of 3 words in English using

word2vec vectors. The modern sense of each word, and the grey context words, are com-
puted from the most recent (modern) time-point embedding space. Earlier points are com-
puted from earlier historical embedding spaces. The visualizations show the changes in the
word gay from meanings related to “cheerful” or “frolicsome” to referring to homosexuality,
the development of the modern “transmission” sense of broadcast from its original sense of
sowing seeds, and the pejoration of the word awful as it shifted from meaning “full of awe”
to meaning “terrible or appalling” (Hamilton et al., 2016b).

Figure from Jurafsky and Martin
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Outline

Bias and Embeddings
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Bias and Embeddings

e Embeddings reproduce the implicit biases and stereotypes that were
latent in the training data

e For example, gender stereotypes :
computer programmer - man + woman — homemaker

father:doctor::mother:nurse
e But also racism, ...

e Bias amplification: gendered terms become more gendered in
embedding space

e Debiasing: transform the embedding space such that gender
stereotypes are removed, but definitional gender is preserved.

Still an open problem ...
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References and Credits
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Credits

e This lecture is mostly based on and contains content from

— Chapter 6 in Speech and Language Processing,
Jurafsky and Martin (2024)

— Lena Voita's NLP Course for You

https://lena-voita.github.io/nlp_course/word_embeddings.html#w2v_idea

e Some slides took inspiration from a presentation of Marco Baroni
and Gemma Boleda
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