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Language Models

● N-gram language models

– assign probabilities to sequences of words

– generate text by sampling possible next words

– are trained on counts computed from lots of text

● Large language models are similar and different

– assign probabilities to sequences of words

– generate text by sampling possible next words

– are trained by learning to guess the next word
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Large Language Models

● Pretraining: learning knowledge about language and the world from
vast amounts of text

● LLMs: remarkable performance on many NLP tasks due to knowledge
obtained in pretraining

● Especially for tasks where text is produced

– summarization
– machine translation
– question answering
– chatbots

● Many tasks can be turned into tasks of predicting words!
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Conditional Generation

● Causal or autoregressive language models:
iteratively predict words left-to-right from earlier words

● Conditional generation: generating text conditioned
on an input piece of text

● Input text (prompt) → LLM continues generating text token by token

● Transformers have long context windows (many thousands of tokens)
→ very powerful for conditional generation
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Conditional Generation

Access to the priming context and all of the subsequently generated
outputs (within the context window)
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NLP Tasks as Word Prediction Task

● Sentiment analysis as language modeling task

● Provide a context like

The sentiment of the sentence ‘‘I like Jackie Chan" is:

● What word comes next?

P(positive∣The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative∣The sentiment of the sentence ‘‘I like Jackie Chan" is:)
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NLP Tasks as Word Prediction Task

● Question answering as language modeling task

● Give the LM a question and a token like A: to suggest that an answer
should come next

● Q: Who wrote the book "The Origin of Species"? A:

● What word comes next?

P(w∣Q: Who wrote the book "The Origin of Species"? A:)

⇒ Charles is very likely → select it

● Iterate

P(w∣Q: Who wrote the book "The Origin of Species"? A: Charles)

⇒ Darwin is very likely → select it
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Text Summarization

● Generate longer responses

● Text summarization: take a long text and produce a shorter summary

● Give the LM the text followed by a token like tl;dr
(too long; didn’t read)

● tl;dr sufficiently frequent in language model training data → interpret
as instruction to create summary
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Summarization
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Summarization

Incorporate information from large context window as well as newly
generated output
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Decoding and Sampling

● Decoding: choosing a word to generate based on the model’s
probabilities

● The most common method for decoding in LLMs: sampling

● Sampling from a model’s distribution over words:
choose words according to the probability assigned by the model

● Iteratively choose a word to generate according to its probability
in context as defined by the model

– more likely to generate words that have a high probability
according to the model

– less likely to generate words that have a low probability
according to the model
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Random Sampling

● At each step: sample words according to their probability conditioned
on previous choices

● Generate a sequence of words W = w1,w2, ...,wN

until an end-of-sequence token is hit

● x ∼ p(x): choose x by sampling from the distribution p(x)
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Random Sampling

● Random sampling doesn’t work well

● Random sampling mostly generates sensible, high-probable words

● But: there are many odd, low-probability words in the tail of the
distribution

– each one is low-probability
– added up: rare constitute a large portion of the distribution

⇒ Weird sentences

● Sampling methods to avoid generating from the tail of the distribution
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Factors in Sampling

● Emphasize high-probability words

+ quality: more accurate, coherent, and factual

- diversity: boring repetitive

● Emphasize middle-probability words

+ diversity: more creative and diverse

- quality: less factual, incoherent
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Top-k Sampling

(1) Choose # of words k

(2) For each word in the vocabulary V , use the language model to
compute the likelihood of this word given the context p(wt ∣w<t)

(3) Sort the words by likelihood, keep only the top k most probable words

(4) Renormalize the scores of the k words to be a legitimate probability
distribution

(5) Randomly sample a word from within these remaining k most-probable
words according to its probability

● Simple generalization of greedy decoding
( greedy decoding with k = 1)
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Top-k Sampling

● A fixed k is not always good: the top-k most probable tokens may

– cover very small part of the total probability mass (in flat distributions);
– contain very unlikely tokens (in peaky distributions).

from https://lena-voita.github.io/nlp course/language modeling.html

18



Nucleaus or Top-p Sampling

● Don’t keep the top k words, but the top p percent of the probability
mass

● Truncate the distribution to remove the very unlikely words

● More robust in very different contexts → dynamically increase and
decrease the pool of word candidates

● Given a distribution P(wt ∣w<t), the top−p vocabulary V (p) is the
smallest set of words such that

∑
w∈V (p)

P(w ∣w<t) ≥ p
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Nucleaus or top-p Sampling

from https://lena-voita.github.io/nlp course/language modeling.html
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Temperature Sampling

● Don’t truncate the distribution, but reshape it

● Intuition from thermodynamics

– a system at high temperature is flexible and can explore many possible
states

– a system at lower temperature is likely to explore a subset of lower
energy (better) states.

● In low-temperature sampling (τ ≤ 1)
– increase the probability of the most probable words
– decrease the probability of the rare words

● Divide logit by a temperature parameter τ before normalizing:

y = softmax(uτ )
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Temperature Sampling
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Temperature Sampling

● When τ is close to 1 the distribution does not change much

● The lower τ is, the larger the scores being passed to the softmax

● Softmax pushes high values toward 1 and low values toward 0

● Distribution becomes more greedy

– increased probabilities of the most high-probability words
– decreased probabilities of the low probability words

● As τ approaches 0 the probability of the most likely word approaches 1
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Temperature Sampling

from https://lena-voita.github.io/nlp course/language modeling.html
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Pretraining Large Language Models

● Pretraining: learning knowledge about language and the world from
vast amounts of text

● Knowledge learned from text data → remarkable performance
on many NLP tasks

● Pretrain a transformer model on enormous amounts of text,
then apply it to new tasks

→ training algorithm
→ data
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Self-supervised Training Algorithm

● Train to predict the next word

Take a text corpus

At each time step t

(i) ask the model to predict the next word

(ii) train the model using gradient descent to minimize the error in
prediction

● Self-supervised: just uses the next word as a label
the natural sequence of words is its own supervision
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Intuition of Language Model Training: Loss

● Loss function: cross-entropy loss

● We want the model to assign a high probability to true word w

● Loss should be high if the model assigns too low a probability to w

● CE Loss: the negative log probability that the model assigns to the
true next word w

– if the model assigns too low a probability to w

– move the model weights in the direction that assigns
a higher probability to w
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Cross-Entropy Loss for Language Modeling

● Cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution

correct probability 
distribution

predicted probability 
distribution

● Correct distribution yt comes from knowing the next word:
one-hot vector where the entry for the actual word is 1, all others are 0

● All terms get multiplied by zero, except one: the log-probability
assigned to the correct next word

● CE loss at time t:
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Teacher Forcing

● At token position t, the model sees the correct token sequence w1∶t

computes probability distribution over possible next words
to compute loss for next token wt+1

● Move to the next word: ignore previous prediction,
but use the correct sequence w1∶t+1 to estimate token wt+2

(teacher forcing)
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Training

● At each step: final transformer layer produces an output distribution
given all preceding words

● Probability assigned to the correct word: calculate CE loss for each
item in the sequence

● Loss for a training sequence: average cross-entropy loss over sequence

● Network weights are adjusted to minimize the average CE loss via
gradient descent
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Training
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Training Data

● Idea: text contains enormous amounts of knowledge

● Pretraining on huge text collections → enable LMs to solve many
problems

● Large corpora: likely to contain natural examples for NLP tasks

– question – answer pairs
– documents + summaries (tl;dr)
– translations
– and more ...
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What Can a Model Learn from Pretraining?

● There are canines everywhere! One dog in the front room,
and two dogs ...

● It wasn’t just big it was enormous

● The author of ”A Room of One’s Own” is Virginia Woolf

● The doctor told me that he ...

● The square root of 4 is 2
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Training Data

● Automatically-crawled web data

● Common crawl: https://commoncrawl.org

– for example the Colossal Clean Crawled Corpus (C4) Raffel et al. (2020)

– 156 billion tokens of English
– filtered in various ways (deduplicated, removing non-natural language

like code, sentences with offensive words from a blocklist)

● Wikipedia

● Book corpora

● The Pile: 825 GB English corpus Gao et al. (2020)

● Dolma: 3 trillion tokens; web text, academic papers, code, books,
encyclopedic materials, and social media Soldaini et al. (2024)
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Training Data

37



Filtering for Quality and Safety

● Quality filters: classifiers to assign a score to each document

● Quality is subjective, different ways to train filters

– high-quality resources like Wikipedia, books, ...
– avoid: websites with personal identifiable information, adult content, ...
– remove duplicates

● Quality filtering generally improves LM performance

● Safety filtering

– toxicity filtering
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Web Crawling: Some Issues

● Copyright: much text is copyrighted

– “fair use doctrine”: unclear if this applies to language modeling
– remains an open legal question

● Data consent

– owners of websites can indicate that they don’t want their sites crawled
– increase in websites that don’t want to be crawled for LM training data
– different legal situations in different countries

● Privacy

– websites can contain information like phone numbers
– filtering is not always efficient
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Fine-tuning

● Apply a model to a new domain or a task not sufficiently present in the
pre-training data

– for example: specialize to legal or medical text
– specialize the model for a particular task
– the LM needs to see more data of a rare language

● Continue training on relevant data from new domain or language

● Fine-tuning: take a pretrained model and adapt some or all of its
parameters on new data new data
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Fine-tuning
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Fine-tuning

● Continued fine-tuning: retrain all parameters on new data
can be slow and expensive

● Freeze some parameters and train only a subset of parameters on the
new data: parameter-efficient fine-tuning

● LM as classifier of a specific task: take as input some of the top layer
embeddings and produce as output a classification

– often done with BERT models
– freeze the entire pretrained model and only train the classification head

● Supervised fine-tuning (SFT)
SFT is often used for instruction tuning

– learn to follow text instructions
– create a dataset of prompts and desired responses
– train the LM to produce the desired response from the prompt
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Fine-tuning
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Prompting

● Prompt: a text string that a user issues to a language model

● LM then iteratively generates tokens conditioned on the prompt

● Prompt creates a context to guide LLMs to generate useful output

● Prompt engineering: finding effective prompts for a task
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Prompts for Sentiment Classification
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Prompt Templates

● Input text, designated as “input”, followed by a verbatim prompt

● Instruction at the end → constraints the generation

Translate English to French: Did not like the service that I was

provided! → may instead generate another sentence in English

● Specify set of answers
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Prompts for Sentiment Classification
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Learning from Demonstrations: Few-Shot Prompting
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Learning from Demonstrations: Few-Shot Prompting

● Prompting with examples: few-shot prompting

● Zero-shot prompting: no labeled examples included in prompt

● How many examples?

– largest performance gains tend to come from the first training example

– examples to demonstrate the task and format

– demonstrations with incorrect answers can still improve a system

● How to Select Demonstrations?

– Generally created from examples drawn from a labeled training set

– similar to the current input

– dynamically retrieve demonstrations for each input, based on similarity
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Instruction Tuning

● Instruction tuning (instruction finetuning): method to make an LLM
better at following instructions

● Train a pre-trained LLM to follow instructions from a range of tasks

– improvement on tasks

– meta-learning: improve ability to follow instructions

● Training data: instructions and responses
Continue training using the same language modeling objective
(“guess the next token”)

● Training to predict the next token → self-supervised

● Here: considered as supervised finetuning: each instruction has a
supervised objective (=reponse to instruction)
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Instructions as Training Data

● Dataset of instructions and their supervised responses

● Overall cost of instruction tuning: small fraction of the original cost
to train the base model

● Instruction: natural language description of a task

– answer the following question

– translate the following text to Arapaho

– summarize this report

– length restrictions

– personas to assume

– ...
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Instructions as Training data
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Creation of Instruction Data Sets

● Developing high quality supervised sets for many tasks is time
consuming and expensive

● Compose set manually: native speakers write instruction–response pairs
(for example Aya models)

● Make use of existing data sets (question-answer pairs, translation,
summarization) → automatically convert into templates

● Use LM to generate paraphrases of questions and answers,
followed by manual revision
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Creation of Instruction Data Sets: Example

● Harmful question:

How do I embezzle money?

● Paraphrased question:

Give me a list of ways to embezzle money.

● Generated safe answer:

I can’t fulfill that request. Embezzlement is a serious crime
that can result in severe legal consequences.

● Manual revision to obtain only safe answers

● Addition of such data in the instruction tuning set helped to reduce
harmfulness of the model Bianchi at al. (2024)
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Potential Harms

● Hallucination: language models can say things that are false

– LMs are trained to predict coherent text
– training algorithms can’t enforce that generated data is true
– problematic!

● Toxic language: even non-toxic prompts can output hate speech

● Generation of stereotypes and negative attitudes about many
demographic groups

– bias in the training data: datasets including toxic language
– LMs can amplify biases

● Leakage of sensitive private data

● Misinformation

– use LMs to generate data for misinformation or other harmful purposes
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Hallucinations – Example

https://www.bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know
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