Generative Models on Text
Large Language Models
N-gram Language Models

Marion Di Marco

May 6, 2025

N-Gram Language Models

e What could be the next word in the following sentence

Please turn your homework ... in
over
refrigerator

e Language models: assign a probability to upcoming words
or sequences of words

e Assign a probability to sentences:

(1) all of a sudden I notice three guys standing on the sidewalk

(2) on guys all I of notice sidewalk three a sudden standing the

What can LMs be used for?

Choose a better sentence or word

Correct grammar or spelling

Their are two midterms — There ...
Everything has improve — ... improved

Speech recognition

| will be back soonish
| will be bassoon dish

Augmentative and Alternative communication

Communication via eye gaze for people unable to speak physically:
suggest word menu

Large Language Models: built to predict the next word

Outline

N-Gram Models

Word Probabilities

P(wl|h): the probability of the word w given some history h
P(blue|the water of Walden Pond is so beautifully)

Relative frequency counts based on a large corpus:
P(blue|the water of Walden Pond is so beautifully) =

C(the water of Walden Pond is so beautifully blue)
C(the water of Walden Pond is so beautifully)

Even a very large corpus cannot contain all possible sentences

e Let's find a better method!

Chain Rule of Probability

e Compute the probability of a word sequence like P(wq, ws, ..., wp,)

e Decompose the probability using the chain rule of probability
P(wy...wp) = P(wy)P(wa|wy)P(ws|wi)...P(wWph|wiip-1)

= [T P(wk|wi:k-1)
kel

e Problem: still cannot compute the exact probability of a word given a
long sequence of preceding words P(wp|w.p-1)

Markov Assumption

e N-gram model: approximate the history by the last few words

e Bigram model: approximate the probability P(wp|wi.,-1) by the
conditional probability of the previous word P(wp|w,-1)
P(Wnlwlzn—l) ~ P(Wn|Wn—1)

e Markov assumption: assumption that the probability of a word
depends only on the previous word

e Given the bigram assumption, compute the probability of a sequence

P(wi) =~ | [P(wilwe-1) (3.9)
k=1

Maximum Likelihood Estimation

e Estimate n-gram probabilities with maximum likelihood estimation:

get counts from corpus; normalize such that they lie between 0 and 1

e Bigram probability: count of the bigram C(wp_1 wp)
normalize with the sum of all bigrams sharing the first word wj_1:

C(Wn—1wn)

P(wn|wn-1) = 5 Cwn1w)

(3.10)

e Simplify: the sum of all bigrams starting with w,_1 is equal
to the unigram count of wj_1

_ C(Wn— lwn)

P(W,,|W,,_1) - C(Wn—l) (3-11)

= Relative frequency

N-gram Probabilities: Example

P(Walwa_1) = % 3.11)

e Special symbol to denote beginning and end of a sentence: <s>, </s>

e Small example corpus:

<s> I am Sam </s>

<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

e Some probabilities:

P(I|<s>) =2 =0.67 P(Sam|<s>) =1
P(</s>|Sam) = §=0.5 P(Samlam)=%=0.

N-gram Models: Example

e Berkeley Restaurant Project Corpus (dialogue system)

e Sample user queries

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i’'m looking for a good place to eat breakfast

when is caffe venezia open during the day

N-gram Models: Example

e Bigram counts from Berkeley Restaurant Project

e Majority of the values are zero
e Samples are chosen to cohere with each other, a random set of words

would be even more sparse

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 1 2 42 0
chinese 1 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1

Bigram counts for eight of the words (out of ¥ = 1446) in the Berkeley Restau-

rant Project corpus of 9332 sentences. Zero counts are in gray. Each cell shows the count of
the column label word following the row label word. Thus the cell in row i and column want
means that want followed i 827 times in the corpus.

N-gram Models: Example

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
i want to eat chinese food lunch spend

i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0O 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 O
chinese 0.0063 0 0 0 0 0.52 0.0063 0O
food 0.014 O 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

| TN K®] Bigram probabilities for eight words in the Berkeley Restaurant Project corpus

of 9332 sentences. Zero probabilities are in gray.

N-gram Models: Example

e Some more probabilities

P(il<s>)=0.25 P(english|want) =0.0011
P(food|english) =0.5 P(</s>|food)=0.68

e Compute the probability for “I want English food”

P(<s> i want english food </s>)

P(i|<s>)P(want|i)P(english|want)
P(food|english)P(</s>|food)

= .25x.33 x.0011 x 0.5 x 0.68

= .000031

Practical Issues

e Probabilities are less than 1
— the more multiplications, the smaller the product becomes
— risk of numerical underflow

e Represent language model probabilities as log probabilities

e Adding in log space is equivalent to multiplying in linear space

P1 X p2 X p3 X ps = exp(log p1 +1log pr +log p3 +log ps) (3.13)

Context Size

e We can extend the n-gram size to trigrams, 4-grams, 5-grams

e In general, this is an insufficient model of language
language has long-distance dependencies:

The computer which | had just put into the machine room

on the fifth floor crashed

e N-gram models often still work fine

(— for example statistical machine translation)

LM Toolkits and Resources

SRILM: http://www.speech.sri.com/projects/srilm/
KenLM: https://kheafield.com/code/kenlm/

All Our N-gram are Belong to You:
https://research.google/blog/all-our-n-gram-are-belong-to-you/

NLTK tools: https://www.nltk.org/book/ch02.html
Accessing Text Corpora and Lexical Resources
(Generating Random Text with Bigrams)

Outline

Evaluation

Evaluating LMs

e Extrinsic evaluation
— embed the LM in application - measure improvement

— for example machine translation
— in practice: often too expensive to train/run big NLP systems

— sidenote: measuring the quality of a translation (or some other NLP
task) is often not trivial

¢ Intrinsic evaluation
— measure the model’s quality independent of another application

e Perplexity: standard intrinsic metric for LM performance

Training and Test Data

Three distinct data sets
e Training set
— data set to learn parameters for the model
— text corpus to get counts as basis for the n-grams probabilities
e Test set
— held-out data set disjunct from training data
— measure how well the model can handle unknown data
— use test set to measure performance only for the final LM

e Development set
— additional data to measure performance when working on the model

Training and Test Data

The test set should reflect the type of language modeled in the LM

— for example data of medical or chemical domain, hotel booking
— general purpose: wide variety of texts

“Fit of the model”: the LM that has a tighter fit to the test set
(= assigns a higher probability) is better

Seeing test data during training: this is bad!

— bias the model to the test set
— artificially high probabilities, inaccurate perplexity

Test too early on the test set: also bad!
— tune the model to the test set's characteristics

20

Perplexity

Perplexity: measures how well a model predicts a sample
a good model should not be “perplexed” or surprised

Perplexity is the inverse probability of the test set,
normalized by the number of words (“per-word-perplexity”)

For a test set W = wy wo ... wy:

perplexity(W) = P(wiwy... WN)f?WV
o
Plwiwa...wy)

N

Chain rule:

perplexity(W) = |

Higher probability — lower perplexity

21

Perplexity

e Perplexity for a unigram language model

N
. 1
perplexity(W) = ||p(WA)
i=1 !

e Perplexity for a bigram language model

N
1
erplexity(W) = N || ———
perplexity(W) i|=|1P(Wi|Wi—1)

(3.16)

(3.17)

22

Perplexity: Example

e Training corpus for a unigram, bigram and trigram model:
38 million words from Wall Street Journal, 19.979 word vocabulary

e Test corpus: 1.5 million words from Wall Street Journal

Unigram Bigram Trigram
Perplexity 962 170 109

e Trigram model is less surprised than the unigram model

e Lower perplexity — better predictor of words in the test set

e (Intrinsic) improvement in perplexity: no guarantee for (extrinsic)
improvement

e Perplexity often correlates with task improvements — convenient
evaluation metric

23

Outline

Sampling and Generation

2

Predicting Upcoming Words

e The Shannon Game (1948):

How well can we predict the next word?

— one upon a ___ time 0.2
midnight 0.1
— for breakfast I ate ___ and 0.3

— this is a picture of my ___ 3're.zilow 0.002

e Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE
HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE
HAD BE THESE.

e Bigram:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

25

Sampling Words from a Distribution

How Shannon sampled those words in 1948

"Open a book at random and select a letter at random on the page.

This letter is recorded. The book is then opened to another page
and one reads until this letter is encountered. The succeeding
letter is then recorded. Turning to another page this second letter
is searched for and the succeeding letter recorded, etc."

Slide from https://web.stanford.edu/~jurafsky/slp3/slides/1m24aug.pdf

26

Sampling Words from a Distribution

e Sampling from a distribution: choose a random point according to
their likelihood

e Visualization for unigrams:

polyphonic
p=.0000018
) however 5
the of a to in (p=0003) _ '
[006 [oos Jooz]oo2]o0]] oo 3 A
| | I I | [| e 14
.06 .09 .11 .13.15 .66 .99
0 1

— all words cover the probability space between 0 and 1
— intervals in proportion to the relative frequency
— cumulative probabilities in the bottom line

e Choose a random point between 0 and 1: find the word

e Continue until you encounter </s>

Sampling

e Sampling from a language model: generate sentences according to the
likelihood as defined by the model

e Intuition: a good LM prefers “real” sentences over “word salad”
e Sentences with a higher probability in the model are more likely

T was happy to see the

P(* | I was happy to see the)
food 0.05
cat 0.04 1
dog 0.03
mouse 0.02
help 0.02

sunshine 0.01

e There are many more sampling methods
— often avoid words from the very tail of the distribution

(for example: temperature sampling, top-k sampling, top-p sampling)

Figure from https://lena-voita.github.io/nlp_course/language_modeling.html#generation_strategies_sampling

28

Top-k Sampling

e A fixed k is not always good: the top-k most probable tokens may

— cover very small part of the total probability mass (in flat distributions);

— contain very unlikely tokens (in peaky distributions).

Top-K for a flat distribution: not enough

The dress color was

P(= | The dress color was)w
Y

red 0.030
white 0.03 [
black 0.020

pink 0.0210

blue 0.02

violet 6.02]

olive 0,021

from https://lena-voita.github

Top-4

Top-K for a peaky distribution: too many

The light was
P(* | The light was)

on 045
off oua———————— |

in 0010
at 0.011
too 0.011

Top-4

.io/nlp_course/language modeling.html

29

Nucleaus or Top-p Sampling

e Keep the top p percent of the probability mass
e Truncate the distribution to remove the very unlikely words

e More robust in very different contexts — dynamically increase and
decrease the pool of word candidates

The dress color was The light was
P(* | The dress color was) P(* | The light was)
Y on
red 0.030 on | ——
white 0,030 of f g'ﬁ e —] } Top-809
black 0,020 in 0.011
pink 0.0210 at 0.011
blue 0.020 | Top-80% t00 0.011
viole-; 002 D

olive 00200

from https://lena-voita.github.io/nlp_course/language modeling.html

30

Outline

Generalization and Zeros

31

Context and Coherence

e More context is better: higher-order n-grams can capture more context

e More context — more coherent generated sentences

e Example: randomly generated sentences from Shakespeare

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 ’tis done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram —It cannot be but so.

32

Context Size and Coherence

Unigram: no coherent relation between words

Bigram: some local coherence

3-gram and 4-gram: starts to ressemble Shakespeare

The sequence It cannot be but so are directly from King John

Comparatively small corpus: N = 884,647 and V = 29,066
— n-gram probability matrices are very sparse
- 300,000 out of V2 =844 million possible bigrams
— 99.96% of the possible bigrams were never seen (= zero entry)

— Once the 3- gram It cannot be is chosen: only seven possibilities for the
next word: (but, I, that, thus, this, and the period)

33

Training Data

e Choosing the training data: use a training corpus that has a similar
genre to the task

e Can you guess the original data?

— They also point to ninety nine point six billion dollars from
two hundred four oh six three percent of the rates of interest
stores as Mexico and gram Brazil on market conditions

— ‘“You are uniformly charming!’’ cried he, with a smile of
associating and now and then I bowed and they perceived a chaise
and four to wish for.

e N-grams work well if the training and test corpus are similar
e Even with a good training corpus: surprisal in the test set
e Thus: train robust models that are able to generalize

34

Data Sparsity

Even in a large corpus: data sparsity problems
For sufficiently observed n-grams: good estimate of probability

But: some valid sequences do not occur in the corpus

Example from Wall Street Journal corpus (40 million words)

denied the allegations 5
denied the speculation 2
denied the rumors 1
denied the report 1

denied the offer -
denied the loan -

Thus, the LM will estimate that P(offer|denied the) =0

— under-estimate probability of valid sequences — harmful for task
— probability of zero: perplexity is undefined

35

Unknown Words

¢ Unknown words or out-of-vocabulary words (OOV) :
word in the test data that does not occur in the training data

e OOV-rate: percentage of OOVs in the test set

e Create an open vocabulary system: map unknown words to <UNK>

— Choose a fixed vocabulary
— Convert OOVs in the training data to the special token <UNK>
— Estimate probabilities for <UNK> just as for regular words

e Closed vocabulary system: there are no unknown words
Most modern LMs: sub-word tokenization to segment words into smaller
pieces (for example BPE)

36

Outline

Smoothing

37

Unseen Words and Zero Probabilities

e Estimating probabilities based on corpus counts:
finite training corpora will miss some sequences

contain the words ruby and slippers
but not the phrase ruby slippers
= Sequences occurring in the test data but not in the training data

e Under-estimate probability of valid sequences — harmful for task

e If one word has probability of zero, test set has a probability of zero:
perplexity is undefined

e How to handle “zero-probability n-grams”?

= Give some probability to unseen n-grams

38

Smoothing — Intuition

e Words that are in the vocabulary, but appear in an unseen context?

P(w | denied the) lategatons
allegations 5 Speculations
speculations 2 rumors
rumors 1 repors
reports 1 I“::

¢ Smoothing or discounting: “steal’ probability mass from more
frequent events and give them to unseen events

P(w | denied the)

lalegatens
allegations 45 [|
speculations 1.5 ==
rumors 0.5 reports |
reports 0.5 Ber
other 2

——

Laplace Smoothing

Laplace smoothing or add-one smoothing

Add one to all n-gram counts before normalizing into probabilities

MLE estimate:

C(Wn—1wp)

Plwalwn-1) = =000

(3.23)

For add-one smoothed bigram counts: augment the unigram count by
the number of word types in the vocabulary V

Add-1 estimate:

C(Wp—1wn) +1 C(Wp—1wn) +1
[Wae1) = = 324
PLaplace(W ‘W 1) Zw (C(Wn71W) +1) C(anl)“rv ()

40

Laplace Smoothing: Berkeley Restaurant Corpus

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

IJPTIERE] Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058
Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

Reconstruct the Count Matrix

Adjusted count C*: the count that, if divided by

C(wp-1), would result in the smoothed probability:

Clwyjw,) +1

C (wn1wn)

ﬁ.apluce(Wa|Wn—1) =

i want to eat h food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 12 0.39 238 0.78 2.7 2.7 23 0.78
to 19 0.63 3.1 430 1.9 063 44 133
eat 034 034 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 82 0.2 0.098
food 6.9 043 6.9 0.43 0.86 22 043 043
lunch 057 0.19 0.19 0.19 0.19 038 0.19 0.19
spend 032 0.16 0.32 0.16 0.16 0.16 0.16 0.16

LT E] Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus

of 9332 sentences. Previously-zero counts are in gray.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

IJTNTEB] Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-

rant Project corpus of 9332 sentences. Zero counts are in gray.

Clwa—1)+V

Clwa-1)

42

Laplace Smoothing: Berkeley Restaurant Corpus

e Add-1 smoothing can make a very big change to the counts

e For example, C(want to) changed from 608 to 238 and C(Chinese
food) from 82 to 8.2

e Discount d: the ratio between new and old counts

e Sharp change in counts and probabilities: too much probability mass is
moved to unseen events

e Add-1 is not used for n-grams, but for text classification or domains
where the number of zeros is smaller

e Variant: add-k smoothing with a fractional count k < 1 to move less
probability mass away from seen events.
— requires a method to choose k (optimize on devset)
— still doesn’t work well for LMs

43

Backoff and Interpolation

So far: target the problem of zero frequency n-grams

e Use less context to help the model generalize for contexts
it has no knowledge about:

to compute P(w, | wy_» w,_1): if there are no examples of the trigram
Wp_2 Wp_1 Wy, use the bigram probability P(w, | w,_1) instead

e Backoff: use a lower-order n-gram if there is no evidence for a
higher-order n-gram

e Interpolation: mix estimates from all n-gram orders using weights
to comine them

(Interpolation tends to be better)

44

Linear Interpolation

e Simple linear interpolation: combine unigram, bigram and trigram
probabilities, each weighted with a A

ﬁ(wn|wn,2w,.,1) = MiP(wn)
+A‘2P(Wn|wnfl)
+ A3 P(Wy |[Wp—aWn_1) (3.27)

e The \; must sum to 1 — weighted average

e Linear interpolation with context-conditioned weights

P(Walwn—2wn 1) = A(Wn—201)P(wn)
+2.2(Wn,2;n71)P(Wn|Wn—1)
+XS(Wn—Z:n—l)P(Wn|W"—2w"_1) (328)

45

Linear Interpolation

e The) values are learned from a held out corpus
additional training data to learn hyperparameters A

e Choose As to maximize the probability of held-out data

— fix the n-gram probabilities on the training data
— search for As that give the highest probability of the held-out set

e Various ways to find the optimal set of As, for example the EM
(expectation-maximization) algorithm

46

Outline

Kneser-Ney Smoothing

a7

Kneser-Ney Smoothing

e Kneser-Ney is based on absolute discounting

e Discount the counts of frequent n-grams to have probability mass
for unseen events

e How much should we discount?

e Church and Gale (1991):
explore counts of bigrams in comparison to held-out data

e Estimate a discount value

48

Absolute Discounting

Consider an n-gram with count=4. How much to discount?
Look at the count of n-grams with count=4 in held-out data

Compute all bigrams from 22 million words (C1),
check the counts of the bigrams in another 22 million words (C2)

On average: a bigram with count=4 in C1 occurred 3.32 times in C2

Bigram countin Bigram count in
training set heldout set
0.0000270
0.448
1.25
224
3.23

R I . T N =
N
)
-

IJTOTCRE] For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

49

Absolute Discounting

For counts > 1 the bigram counts in the held-out set can be estimated
by subtracting 0.75 from the training set

Absolute discounting: subtract a fixed discount d from each count

— good estimates for high counts — small discount won't hurt
— smaller counts: we don't necessarily trust the estimate

Interpolated absolute discounting for bigrams:

C(wi—1w;) —d
PhbsoluteDiscounting (Wi|Wi-1) = % + A(wi—1)P(w;) (3.31)

First term: discounted bigram
Second term: unigram with an interpolation weight A

Given Figure 3.9: set d=0.75, maybe d=0.5 for bigrams with count=1

(There are more complex ways to determine d)

50

Kneser-Ney Discounting

e More sophisticated way to handle lower-order unigram distribution

e Assume we are interpolating a bigram and unigram model

I can’t see without my reading ___

e glasses seems much more likely than Francisco
— a unigram model should prefer glasses

e San Francisco is very frequent
— Francisco is more common than glasses

e Francisco is frequent, but mainly occurs after San

glasses has a wider distribution

e Words appearing in more contexts — more likely to appear in a new
context

51

Kneser-Ney Discounting

e Unigram model Pcontinuation: how likely is w as a novel continuation?

e Base the estimation of PcontivuaTion on the number of different
contexts w has appeared in (= number of bigram types it completes)

e Continuation probability associated with each unigram: proportional to

the number of bigrams it completes

Pcontinuation(w) o< [{v: C(vw) > 0}|

e Normalize by the total number of bigram types

Pcontinuation(w) = |{(u‘/{,.‘,/v:f)€(gzvu)fff}j|>o}|

e Frequent words appearing in very few contexts: low continuation
probability

52

Interpolated Kneser-Ney

Kneser-Ney smoothing makes use of the probability of a word being a
novel continuation

Interpolated Kneser-Ney smoothing: mixes a discounted probability
with a lower-order continuation probability.

Kneser-Ney addresses the unigram part:

— absolute discounting: simple unigram model
— Kneser-Ney: continuation probability associated with each unigram

Modified Kneser-Ney: instead of a fixed discount d, use different
discounts di, d», d3; for n-grams with counts of 1, 2 and3 or more

53

Outline

Huge Language Models and Stupid Backoff

54

Huge LMs

e Using Web data or other enormous corpora — extremely large LMs
— Web 1 Trillion 5-gram corpus released by Google: unigrams — 5-grams
from 1,024,908,267,229 words (English)

— Google Books Ngrams corpora: n-grams from 800 million tokens
(Chinese, English, French, German, Hebrew, Italian, Russian, Spanish)

e Pruning

— only store n-grams with count > threshold (= Google corpus)
— remove singletons of higher-order n-grams
— entropy-based pruning to remove less important n-grams

e Efficiency
— efficient data structures like tries
— store words as indexes, not strings

55

Stupid Backoff

e With very large LMs, a simple smoothing strategy may be sufficient

e Stupid backoff: no probability distribution
— no discounting of higher-order n-grams

— backoff to lower-order n-gram if higher-order n-gram has a zero count

— lower-order n-grams are weighted by a fixed weight

count(w;_p11;;)

if t(wi_ i) >0
S(WilWins1oi1) _{ count(wyy11:i-1) count(wWi_n+1:7)

(3.30)
/'\.S(wi | Wi_N+2:i—1) otherwise
The backoff terminates in the unigram, which has score S(w) = m;& Brants et al.

(2007) find that a value of 0.4 worked well for A.

56

Outline

Summary

57

Summary

e Language models assign a probability to word sequences;
predict new words from preceding words

e n-grams are Markov models: estimate words from a fixed window of
previous words

e n-gram probabilities: estimated from normalized counts in a corpus

e Evaluation

— extrinsic evaluation on a task
— intrinsic evaluation using perplexity

e Smoothing: more sophisticated way to estimate n-gram probabilities

— rely on lower-order n-grams through backoff or interpolation
— require discounting to create a probability distribution

58

Next Week

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @ IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC @ IRO.UMONTREAL.CA

Département d’Informatigue et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
Journal of Machine Learning Research 3 (2003) 1137-1155

References

Speech and Language Processing
Dan Jurafsky and James H. Martin

Chapter 3: N-gram Language Models
https://web.stanford.edu/~jurafsky/slp3/3.pdf

60

	N-Gram Models
	Evaluation
	Sampling and Generation
	Generalization and Zeros
	Smoothing
	Kneser-Ney Smoothing
	Huge Language Models and Stupid Backoff
	Summary

