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Objectives in LLMs

● LLMs can be prompted for NLP tasks

● Making LLMs bigger does not inherently make them better at
following a user’s intent

● Unintended behaviours

– making up facts
– generating biased or toxic text
– not following user instructions

● Language modeling objective: predicting the next token

● User’s objective: “follow the instruction helpfully and safely”

→ LM objective is misaligned
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Aligning LLMs

● Align LLMs → train them to act in accordance with user’s intention

● Explicit intentions

– follow instructions

● Implicit intentions

– staying truthful
– not being biased, toxic, otherwise harmful

→ We want the LLM to be

– helpful
– honest
– harmless
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Model Alignment by Fine-tuning with human feedback

● Reinforcement learning from human feedback (RLHF)

● Fine-tune GPT3 to follow a broad class of written instructions

● Human preference as a reward signal in fine-tuning

– collect dataset of human-written instructions + desired output behaviour
– mostly English prompts submitted to OpenAI API
– train supervised learning baselines

– collect a dataset of human-labeled comparisons between outputs from
the models

– train a reward model (RM): predict which model output are preferred

– use RM as a reward function; fine-tune the supervised learning baseline
to maximize the reward

⇒ InstructGPT
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InstructGPT – Overview

Table from Ouyang et al. (2022)
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InstructGPT – Data and Models

● Test set: prompts from held-out customers
(not represented in training data)

● Labelers rate the quality of model output

● Automatic evaluations on a range of public NLP datasets

● 3 model sizes (1.3B, 6B, and 175B parameters) using GPT3
architecture
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Instruct GPT – Main Findings (1)

● Labelers significantly prefer InstructGPT outputs
over outputs from GPT-3

– outputs from the 1.3B parameter InstructGPT model are preferred to
outputs from the 175B GPT-3

– same architecture, differ only by the fact that InstructGPT is fine-tuned
on our human data

– This results holds when adding few-shot prompts to GPT-3 to make it
better at following instructions

– Human evaluation:

* InstructGPT models also generate more appropriate outputs
* InstructGPT follows more reliably explicit constraints in the instruction
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Instruct GPT – Main Findings (2)

● InstructGPT models show improvements in truthfulness over
GPT-3

– TruthfulQA benchmark: InstructGPT generates truthful and informative
answers about twice as often as GPT-3

● InstructGPT shows small improvements in toxicity over GPT-3,
but not bias

– InstructGPT models generate fewer toxic outputs when prompted to be
respectful

● Models generalize to the preferences of “held-out” labelers that
did not produce any training data

– “held-out” labelers prefer InstructGPT to GPT-3 at about the same rate
as training labelers

– what about broader group of users?
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Instruct GPT – Main Findings (3)

● InstructGPT models show promising generalization to
instructions outside of the RLHF fine-tuning distribution

– Follow instructions for summarizing code, answer questions about code,
and sometimes follows instructions in different languages, despite these
instructions being very rare in the fine-tuning distribution

– Result suggests that the models are able to generalize the notion of
“following instructions”

● InstructGPT still makes simple mistakes
– fail to follow instructions, make up facts,

– give long hedging answers to simple questions

– fail to detect instructions with false premises
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High-Level Methodology

● Pretrained LM, distribution of prompts, trained human labelers

● Step 1: Collect demonstration data, and train a supervised policy

– labelers provide demonstrations of the desired behavior on the input
prompt distribution

– fine-tune a pretrained GPT-3 model on this data using supervised
learning

● Step 2: Collect comparison data, and train a reward model

– collect a dataset of comparisons between model outputs
– labelers indicate which output they prefer for a given input
– train a reward model to predict the human-preferred output

● Step 3: Optimize a policy against the reward model using PPO

– fine-tune the supervised policy to optimize the reward

● Steps 2 and 3 can be iterated continuously
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Dataset Collection

● Prompt dataset: primarily text prompts submitted to the OpenAI API

● Customers were informed that their data could be used to train further
models

● Heuristically deduplicating prompts by checking for long common
prefix

● Number of prompts limited to 200 per user ID

● Split into train, validation and test sets based on user ID

– validation and test sets contain no data from users whose data is in the
training set

● Filter prompts in the training split for personally identifiable
information (PII)
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Dataset Collection

● Labelers wrote prompts to train the first InstructGPT as an initial
source of instruction-like prompts

● 3 kinds of prompts:

– Plain: ask for an arbitrary task, while ensuring the tasks had sufficient
diversity

– Few-Shot: instruction + and multiple query/response pairs for that
instruction

– User-based: prompts corresponding to use-cases stated in waitlist
applications to the OpenAI API

● Produce three different datasets
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Datasets

Table from Ouyang et al. (2022)
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Datasets

● Use-cases are generative rather than classification or QA

● 96% English
Table from Ouyang et al. (2022)
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Prompts – Examples

Table from Ouyang et al. (2022)
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Prompts – Examples

Table from Ouyang et al. (2022)
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Prompts – Examples

Table from Ouyang et al. (2022)
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Human Data Collection

● Team of about 40 persons

● Broad range of tasks, can occasionally include controversial and
sensitive topics

→ sensitive to the preferences of different demographic groups

→ good at identifying potentially harmful outputs

● screening test to measure labeler performance on these axes → select
labelers
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Human Data Collection

● Alignment criteria may come into conflict: for example, a user requests
a potentially harmful response

● During training: prioritize helpfulness to the user

● Final evaluations: labelers should prioritize truthfulness and
harmlessness

● Second set of labelers to test how well the model generalizes to
preference of other people

● Inter-annotator agreement rates

– training labelers agree with each-other 72.6 ± 1.5% of the time
– held-out labelers: 77.3 ± 1.3%
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Models

● Starting from GPT-3 pretrained models

– trained on a broad distribution of Internet data
– adaptable to a wide range of downstream tasks

● Train models with three different techniques

– Supervised fine-tuning (SFT)
– Reward modeling (RM)
– Reinforcement learning using PPO (Proximal Policy Optimization)

● Baselines:

– comparison of PPO models to SFT models and GPT-3
– comparison to GPT-3 with a few-shot prefix to ‘prompt’ it into an

instruction-following mode
– comparison to fine-tuning 175B GPT-3 on the FLAN and T0 dataset,

both consisting on a variety of NLP tasks
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Supervised Fine-Tuning (SFT)

● Fine-tune GPT-3 on labeler demonstrations

● Select final SFT model based on the RM score on the validation set

● To achieve alignment: more direct ways to integrate human
preferences are needed
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Reward Modeling (RM)

● Starting from SFT model: train a model to output a scalar reward
given a prompt and response

⇒ learn a function to map prompt-response pairs to a score representing
human preference

● Training on a dataset of comparisons between two model outputs on
the same input.
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Reinforcement Learning (RL)

● We have: a reward model that scores the output of an LLM based on
human preference

● We want: optimize the LLM itself such that it generates outputs that
score high according to the reward model

⇒ Reinforcement Learning – Proximal Policy Optimization (PPO)

● Adjust parameters of the LM policy to maximize the expected reward,
make sure that the policy does not deviate too much from SFT policy

● Penalty based on the Kullback-Leibler (KL) divergence to the SFT
model (hyperparameter to set KL penalty)

– penalize deviation from SFT model: keep close to SFT model, but limit
reward maximization

– allow to optimize more aggressively for the reward, but potentially
deviate a lot from SFT model
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Evaluation

● What is alignment?

– models that act in accordance with user intentions
– models should be helpful, honest, and harmless

● “helpful”

– follow instructions,
– infer intention from few-shot prompt or pattern like Q:{question} A:

– potential divergence between labeler’s rating and user’s intent

● “honesty”

– compare model’s actual output vs its “belief” about the correct output
→ impossible

– Instead: measure truthfulness

* evaluate tendency to make up information on closed domain tasks
(“hallucinations”)

* TruthfulQA dataset
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Evaluation

● “harmless”

– harmfulness depend on how LLMs’ outputs are used in the real world

– a chatbot generating toxic outputs → harmful

– potentially helpful for data augmentation to train toxicity detection
model

● Criteria for labeling harmfulness

– is output inappropriate in the context of a customer assistant?

– denigrating a protected class

– containing sexual or violent content

– benchmark models on datasets intended to measure bias and toxicity
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Evaluation Categories

Table from Ouyang et al. (2022)
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Results on API distribution

● Labelers significantly prefer InstructGPT outputs over GPT-3 outputs

Table from Ouyang et al. (2022)
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Results: More Details

● InstructGPT outputs also rated favorably along several more concrete
axes → InstructGPT models more reliable

Table from Ouyang et al. (2022)
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Public NLP datasets do not reflect how LLMs are used

● Comparison of InstructGPT and 175B GPT-3 baseline fine-tuned on
FLAN and T0 datasets

● Indicates that datasets are not sufficiently diverse to improve
performance on API prompt distribution Table from Ouyang et al. (2022)
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Public NLP datasets do not reflect how LLMs are used

● Why does InstructGPT model outperform FLAN and T0?

● Task type

– NLP datasets: often tasks that are easy to evaluate with automatic
metrics (classification, QA, ...)

– such tasks are only a small part in API distribution

● Difficulty for public NLP datasets to obtain a very high diversity of
inputs that are relevant for real-world users
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Results on Public NLP Datasets: QA

● InstructGPT models show improvements in truthfulness over GPT-3

● Models do not need to be instructed to tell the truth

● “Instruction+QA” prompt: respond with “I have no comment”
when unsure

Table from Ouyang et al. (2022)
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Truthful QA – Example

Table from Lin et al. (2022)
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Results on Public NLP Datasets: Toxicity

● InstructGPT shows small improvements in toxicity over GPT-3.

Table from Ouyang et al. (2022)
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Minimize “Alignment Tax”

● Minimize performance regressions on public NLP datasets by
modifying RLHF fine-tuning procedure

● Training a PPO model on API distribution → performance on several
public NLP datasets decreases

⇒ “Alignment tax”

● Experiments with mixing the pretraining gradients into the PPO
gradients: PPO-ptx models

● Adding pretraining updates to PPO fine-tuning (PPO-ptx) mitigates
these performance regressions

● Improvements observed for all datasets, but cannot surpass GPT in
some tasks
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Qualitative Results: non-English

● InstructGPT models show promising generalization to instructions
outside of the RLHF fine-tuning distribution

– instructions in non-English languages
– summarization and question-answering for code

Table from Ouyang et al. (2022)
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Qualitative Results: Summarizing Code

Table from Ouyang et al. (2022)
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Evaluation: Mistakes

● InstructGPT still makes simple mistakes

● Instruction with a false premise → sometimes incorrectly assumes the
premise is true

● Model can overly hedge (say there is no answer, give several possible
answers even when there is an answer from the context)

● when instructions contain multiple explicit constraints or too
challenging constraints

– “list 10 movies made in the 1930’s set in France”

– writing a summary in a specified number of sentences

● Assumption: few prompts in the training set that assume false
premises; models don’t generalize well to these examples

41



Evaluation: Mistakes

Table from Ouyang et al. (2022)
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Implications for Alignment Research

● Cost of increasing model alignment is modest relative to pretraining

– cost of data collection+training runs: fraction of the cost to train GPT-3
– RLHF is very effective at making language models more helpful,

more so than a 100x model size increase

● Evidence that InstructGPT generalizes ‘following instructions’

– for example, non-English tasks, coding tasks
– important property → high cost of human annotation for every task

● Mitigation most of the performance degradations introduced by PPO

– performance degradations ↔ alignment tax
– RLHF as a low-tax alignment technique

● Validation of alignment techniques from research in the real world

– alignment research has historically been rather abstract
or restricted to specific NLP sets

– work with real-world prompts from customers
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What and Who is the Model Aligning to?

● Alignment to a set of labelers’ preferences

● Influence and relevant factors

– Labelers directly produce the data used to fine-tune the model
English-speakers from US or SE-Asia; inter-labeler agreement: 73%

– Influence from OpenAI Team: they provide guidelines, etc.

– Training data is determined by prompts sent by OpenAI customers

* labelers don’t know the contexts of a given prompt
* customer’s intention is not necessarily optimal for another user

– OpenAI customers are not representative of all potential users
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